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ABSTRACT Biomembranes adopt varying morphologies that are vital to cellular functions. Many studies use computational
modeling to understand how various mechanochemical factors contribute to membrane shape transformations. Compared
with approximation-based methods (e.g., finite element method [FEM]), the class of discrete mesh models offers greater flex-
ibility to simulate complex physics and shapes in three dimensions; its formulation produces an efficient algorithm while main-
taining coordinate-free geometric descriptions. However, ambiguities in geometric definitions in the discrete context have led to
a lack of consensus on which discrete mesh model is theoretically and numerically optimal; a bijective relationship between the
terms contributing to both the energy and forces from the discrete and smooth geometric theories remains to be established.
We address this and present an extensible framework, Mem3DgG, for modeling 3D mechanochemical dynamics of membranes
based on discrete differential geometry (DDG) on triangulated meshes. The formalism of DDG resolves the inconsistency and
provides a unifying perspective on how to relate the smooth and discrete energy and forces. To demonstrate, Mem3 DG is used to
model a sequence of examples with increasing mechanochemical complexity: recovering classical shape transformations such
as 1) biconcave disk, dumbbell, and unduloid; and 2) spherical bud on spherical, flat-patch membrane; investigating how the
coupling of membrane mechanics with protein mobility jointly affects phase and shape transformation. As high-resolution
3D imaging of membrane ultrastructure becomes more readily available, we envision Mem3DG to be applied as an end-to-end
tool to simulate realistic cell geometry under user-specified mechanochemical conditions.

SIGNIFICANCE Cellular membranes have shapes and shape changes that characterize cells/organelles, and support
nutrient trafficking among other critical processes. Modeling membrane shape changes using mechanical principles can
provide insight into how cells robustly bend membranes to support life. Mathematical and computational strategies to
solve the equations describing membrane shape evolution can be complex and challenging without simplifying
assumptions. Here, we present a new, general, numerical approach to model arbitrary 3D membrane shapes in response to
interaction with curvature-sensing and generating membrane proteins. The accompanying implementation, Mem3DgG, is a
software tool to make computational membrane mechanics accessible to the general researcher.

INTRODUCTION

Computational modeling of lipid bilayer mechanics
has long been accepted as a way to probe the bio-
physical aspects of membrane curvature generation.
The ability of lipid bilayers and cellular membranes
to bend in response to various applied forces has
been studied extensively from the mathematical
modeling perspective. However, the nonlinear system
of equations that result from such modeling often
leads to a computational bottleneck to generate pre-

dictions from simulations that can be tested against
experimentally observed shapes. In this study, we
develop a mesh-based model using discrete differen-
tial geometry (DDG) to reduce this bottleneck. To
justify why our method is necessary and is a computa-
tional advance, we first describe the importance
of membrane curvature generation in biology, the cur-
rent state of the art in membrane mechanics
modeling, and finally explicitly state the goals of our
approach.

As one of the most essential and conserved
structures of cells, cellular membranes perform many
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functions. First, they form compartments to separate
chemical environments. Beyond the passive role of par-
titioning space, lipids in the membranes interact with
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proteins and other cellular components influencing cell
signaling (e.g., by localizing molecules and acting as an
entropic barrier) (1,2). Membrane morphology and to-
pology changes are critical for trafficking cargo in
and out of cells and are very carefully regulated
(3-8). Central to these roles is the ability of the mem-
brane to curve and adopt varying morphological config-
urations from spheres to highly-curved and variegated
structures.

Advances in experimental studies of membrane-pro-
tein interactions (9-20), ultrastructural imaging
(21-30), and image analysis (9-11,31-37) have re-
vealed much about the molecular interactions that
regulate membrane curvature. To investigate the me-
chanics behind these interactions, many theoretical
and computational models in terms of membrane
energetics and thermodynamics have been developed
(7,38-52). These models, owing to the ease of
in silico experimentation, have become an important
tool for generating and testing hypotheses (53,54).
These mechanics models and associated simulations
have been used to provide intuition on the mechanical
requirements for forming and maintaining complex
cellular membrane shapes (55-63).

While the utility of this approach has been estab-
lished and many models have been developed (38),
many models are limited by critical assumptions or
other technical challenges. For example, the ability to
use geometries from membrane ultrastructural imag-
ing experiments as a starting condition would improve
model realism (64). With respect to computational
complexity, the solver should be able to model defor-
mations and topological changes in three dimensions
and be compatible with both energy minimization and
time integration for comparing with static and time-se-
ries experiments respectively. This is in contrast to the
current assumptions of the existence of an axis of sym-
metry that is quite commonly made for purposes of
ease of simulation (65). An additional feature for these
solvers should be that their implementation is modular
such that the addition of new physics or increasing
model complexity should be straightforward. This in-
cludes the potential for coupling the membrane model
with agent-based and other simulations to propagate
other cellular components such as the cytoskeleton
(66). Thus, new computational tools which are general,
easy to use, and without restrictive assumptions are
needed to bring modeling closer to experimental obser-
vations of membrane shapes in cells.

To emphasize the motivations behind our choice of
extending and developing a new mesh-based mem-
brane model, we provide a summary of the legacy liter-
ature in modeling membrane mechanics. The most
common theoretical model of membrane bending is
the Helfrich-Canham-Evans Hamiltonian (The Helfrich
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energy is related to the Willmore energy in the mathe-
matics literature (67)), which describes the lipid bilayer
as a 2D fluid-like structure that exhibits resistance to
bending in the out-of-plane direction (39,40,68-70). It
is a continuum model that describes the bending en-
ergy of the membrane as a function of its mean and
Gaussian curvatures. The assumptions for the contin-
uum are satisfied as long as the deformations are
much larger in length scale compared with the individ-
ual lipid components.

Given the necessary material properties and bound-
ary conditions, by minimizing the Helfrich energy, we
can obtain the equilibrium shape of the membrane
(39,70-72). While straightforward in concept, energy
minimization requires the determination of the forces
on the membrane, which is a challenging task (65).
The forces on the membrane are given by the variation
of the energy with respect to the embedded coordinate
(i.e., shape) of the membrane (we call this variation the
shape derivative, which is distinct from the chemical
derivative that will be introduced later in the context
of mechanochemical coupling). Taking the shape de-
rivatives of the Helfrich energy produces the “shape
equation,” so termed because solutions of this partial
differential equation (PDE), with the prescribed bound-
ary conditions, produce configurations at equilibrium
(i.e., force balance).

Solving the shape equation is non-trivial since it is a
PDE with fourth-order nonlinear terms. As a result,
analytical solutions of the shape equation are known
only for a few cases constrained to specific geometries
and boundary conditions (42). For most systems, we
must resort to the use of numerical methods. The
simplest numerical schemes can be formulated by mak-
ing restrictive assumptions such as considering only
small deformations from a plane (e.g., Monge parame-
trization) or assuming that there exists an axis of sym-
metry such that the resulting boundary value system
can be integrated (38). While these methods are suit-
able for idealized shapes, these assumptions are not
consistent with the membrane shapes found in biology
are and thus not general enough for advancing the field.

Solvers of membrane shape in 3D have also been
developed and can be categorized into three groups:
1) phase field or level set methods (73-77), 2) finite
element method (FEM) (78-85), and 3) discrete surface
mesh models (60,86—-99). These methods and others,
reviewed in detail by Guckenberger et al. (100), differ
in the strategy used to discretize the membrane domain
and compute the relevant derivatives. We compare the
aforementioned general, 3D models with our estab-
lished model criteria in Table 1 and elaborate below.

Phase field and level set methods solve the shape
equation by propagating a density field on an ambient
volumetric mesh. The membrane shape is implicit in



TABLE 1
mission of computational membrane mechanobiology

Comparison of common mathematical frameworks for modeling membrane mechanics with specifications to advance the

Phase field/level set FEM Discrete mesh/Mem3DG
General 3D 4 I I
Statics + dynamics % v e
Membrane heterogeneity 17 4 %
Incorporation of agents/particles %
Incorporation of stochastic dynamics (e.g., DPD or MC) I
Explicit surface parametrization I I
Coordinate-free evaluation I
Ability to support topological changes I requires mesh surgery
Error analysis 4 [

A general framework will permit the easy transfer of inputs and results between model and experiments. Models that can be coupled with other
modeling schemes representing other cellular components can help address the complexity of cell biology. Discrete mesh models have many
desirable traits, with respect to these specifications, at the cost of forgoing rigorous error analysis.

these models and can be found by drawing an isosur-
face or level set of the model. While this is ideal for
modeling membrane topological changes, the implicit
representation of the membrane adds complexity for
interfacing with data generated using modern methods
of visualizing membrane ultrastructure. The meshes
output from ultrastructural studies must be converted
into a density or phase field prior to input to the model.
While this conversion is possible, representing the dy-
namic and variegated shapes of cellular membranes
would require a dense volume mesh, which reduces
computational tractability. The implicit surface repre-
sentation also complicates the addition of new in-plane
physics for end users.

FEM and discrete mesh models use an explicit sur-
face parametrization (i.e., a mesh). Thus the meshes
output from ultrastructural imaging datasets can be
used in these frameworks with minor modifications
(32,101). FEM relies on elementwise interpolation
functions and is commonly derived from the weak
formulation of boundary value problems. Comparing
FEM methods with our specifications we identify a
few key challenges. First, the numerical evaluation of
smooth geometric measurements on arbitrary mani-
folds in an FEM framework requires non-intuitive
tensor algebra to translate the shape equation in coor-
dinate where it is ready to be solved. After this formu-
lation, solving the shape equation can require the use
of high-order function basis such as the C' conform-
ing FEM based on subdivision scheme (78,79) or iso-
geometric analysis (IGA) (81-83,85), which adds
code complexity and run-time cost. Extending an
FEM framework to incorporate new physics, topologi-
cal changes, or interfaces with other models requires
advanced mathematical and coding skills. This can
restrict the usage to the computational math commu-
nity and prevent broad usage by the biophysics
community.

Finally, evaluating discrete mesh-based methods,
which define the system energy and/or forces using

geometric primitives from a mesh, we find that they
satisfy many of the requirements in Table 1. Due to
the ease of use and implementation, discrete mesh
models have gained in popularity and many different
schemes can be found in the literature (60,86-
99,102,103). These schemes differ in their approach
to defining and computing geometric measurements
necessary for defining the energy and forces on a
discrete object. Discrete geometries have discontinu-
ities and limited information that leads to degenerate
definitions for geometric values. For example, there is
no canonical definition for the normal of a vertex of a
mesh as opposed to the normal of a smooth geometry
(89,104,105). One challenge for selecting the suitable
formulation to use is the lack of approximation error
metric for which the discrete definition best matches
the smooth theory. Another confounding factor is the
step at which the problem is discretized. Some imple-
mentations discretize the energy of the system by con-
structing standalone discrete energy, which captures
the behavior of the Helfrich energy (65). From this
discrete energy, they take the shape derivatives to
obtain an expression for the discrete force. Without
careful consideration, the discrete forces derived in
this manner are unstructured and there is little resem-
blance to expressions of force from smooth theory. A
second option is to discretize the smooth force
expression directly (65,100). While this preserves the
geometric connection for the forces, there is no longer
well-defined discrete energy. Several discrete mesh
methods were benchmarked by Bian et al. (89) and
Guckenberger et al. (100) who found differences in
the accuracy, robustness, and ease of implementation
(89,100).

In this work, we outline a discrete mesh framework for
modeling membrane mechanics with the following goals
in mind: 1) we do not make a priori assumptions about
axes of symmetry or restrict the coordinates in any
way; 2) we resolve the ambiguity in the definition of geo-
metric measurements on the mesh and permit a direct
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comparison for both the energy and force expressions in
smooth and discrete contexts; and 3) this framework al-
lows for use of meshes generated from ultrastructural
imaging. We begin by defining discrete energy that is
analogous to the Helfrich energy. Then, using concepts
from DDG, we derive discrete shape derivatives analyti-
cally and group terms to produce a discrete shape equa-
tion. We will show that our discrete shape equation has a
clear correspondence between the terms of the smooth
shape equations (57,67,70,71). Beyond establishing this
important connection, we will show that the elegant
analytical expressions for discrete variational terms
from the DDG also yield improved geometric intuition
and numerical accuracy (104,105).

Benchmarking of our expressions was performed with
our accompanying software implementation called
Membrane Dynamics in 3D using Discrete Differential
Geometry (Mem3DG). Mem3DG is written in C++, released
under the Mozilla Public License version 2, and comes
with accompanying documentation and tutorials which
can be accessed on GitHub (https://github.com/
RangamaniLabUCSD/Mem3DG). Beyond the computa-
tion of discrete energies and forces on a mesh of interest,
we also include functionality for performing energy mini-
mization and time integration. Using Mem3DG, we vali-
date the exactness of the analytical expressions of
force terms by numerically examining the convergence
of the force terms as a function of system energy
perturbation. To illustrate compliance with our tool
specifications, we apply Mem3 DG to a sequence of exam-
ples with increasing complexity. Finally, we outline the
steps to incorporate additional physics such as mem-
brane-protein interactions and surface diffusion into
Mem3DG.

THEORY

The lipid bilayer is modeled as a thin elastic shell us-
ing the Helfrich-Canham-Evans Hamiltonian or sponta-
neous curvature model (39,69,106). The bending
energy, E,, of a smooth surface or 2-manifold, M,
can be expressed in terms of the mean
H, Gaussian K, and spontaneous curvature A with ma-
terial parameters « the bending and «; the saddle-
splay moduli. Additional energy terms E; and E, ac-
count for the tension area (1-A) and pressure-volume
(AP-V) relationships. The total energy of the bilayer is
therefore

A 14
E =/ [k(H — H)® + kK]dA +/ MdA — / APAV.
M A v

—_——
E, E, E,

6]
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The preferred surface area and volume, A and V,
combined with the spontaneous curvature, A, charac-
terize the zero-energy state for the system energy. In
a nutshell, given the material properties, the system en-
ergy is fully determined by its geometric measure-
ments such as volume, area, and curvatures.

Machinery to express these measurements have
been a topic of extensive study in classical differential
geometry (107,108). However, finding the minima of
the governing energy, solving the stationary solution
to the geometric PDE, can be mathematically and
numerically difficult. While differential geometry pro-
vides succinct expressions to describe the measure-
ments in a coordinate-free fashion, computational
methods often require the introduction of a coordinate
basis and subsequent manipulation of expressions us-
ing tensor algebra, which can obscure the underlying
geometric intuition.

As an alternative, forgoing the need for a smooth
geometry, one can treat a discrete geometry (such
as a geometric mesh) as the input. This perspective
where the discrete geometry is the actual geometry
is that of DDG (109). By eliminating the burdens of
treating the input mesh as an approximation of a
smooth object, DDG capitalizes upon the piecewise
nature of meshes to produce efficient and paralleliz-
able finite difference-like formulae which are
amenable to algorithmic implementation while main-
taining clear geometric meaning. In the following sec-
tions, we use concepts from DDG to formulate a
discrete analog to the smooth membrane shape prob-
lem. Following the derivation of the discrete theory, we
describe the development of an accompanying soft-
ware implementation called Mem3DG.

Notation and preliminaries

We assume the following notation conventions and
provide a table of important symbols (Table 2). To
aid the reader on how the elements of the mesh are
used in the derivation, several fundamental geometric
primitives (i.e., values on a mesh which are easily
measurable; listed in Table 2A) are illustrated in
Fig. 1 A-C.

We note that, in discrete contexts, the notation, [ g,
should be considered the discrete (integrated) counter-
part of a pointwise measurement a in a smooth setting.
The rationale and significance behind the usage of an
integrated quantity in discrete contexts are elaborated
in Appendix B and the DDG literature (104,105). Using
this notation, discrete surface integrals are expressed
as sums of integrated values over the discrete mesh
components listed in Table 2B (e.g., Zvlfaf is the

discrete analog to [, a). It is possible to interchange
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TABLE 2 Glossary of commonly used symbols and conventions

A. Geometric primitives

M smooth or discrete 2-manifold
FeR? embedded coordinate of M
l edge length
ya corner angle
1) dihedral angle
A area of mesh cell,
e.g., face Ay, edge A; and vertex A;
i surface normal

B. Surface integral

Ja integrated quantity over mesh
cell; e.g., Aja; or Agra
> sum over all vertices v; of the mesh
D sum over all edges ¢;; of the mesh
EM sum over all faces f;; of the mesh
2 oveN) sum over the vertex v; in the neighborhood of a
D ese(a) sum over the edges ¢;; in the neighborhood of «
2fpenta sum over the face fj in the neighborhood of a
C. Tensors
xeR scalar quantity
Xit,{g; sub- and super-script convention; e.g., ]ff? is
the bending force for vertex v;
XeR? vector quantity
x ={x} (n x1) indexed scalar quantity
X ={x} (n x3) indexed vector quantity
X matrix or tensor quantity

D. Derivatives

Vi shape derivative

Vs chemical derivative

' surface gradient

a time derivative

A Laplace-Beltrami operator

E. Physical variables

E energy

f force density

u chemical potential

H mean curvature

K Gaussian curvature

A surface area

Vv enclosed volume

- preferred state; e.g., A is the spontaneous curvature

¢ €[0,1] protein density parameter

A membrane tension

AP osmotic pressure across the membrane
K bending rigidity

KG Gaussian modulus

K, stretching modulus

Ky osmotic strength constant

¢ molar ambient concentration

n molar quantity of enclosed solute
n Dirichlet energy constant

e adsorption energy constant

¢ membrane drag constant

B protein mobility constant

between integrated, [ a;, and pointwise, g;, quantities by
using the dual area (4;),

a; = /a,-/A,-. (2)

For simplicity, we will not use separate notations for
operators applying in smooth and discrete settings.
The context can be inferred from the objects to which
the operators are applied. Where it serves to improve
our geometric or other intuition, smooth objects
will be presented alongside discrete objects for
comparison.

Obtaining a discrete energy defined by mesh
primitives

Following the perspective of DDG, we restrict our input
to the family of triangulated manifold meshes, M (i.e.,
discrete 2-manifolds embedded in R*) (We will use M
for both the smooth and discrete surfaces).

Paralleling the smooth Helfrich Hamiltonian (Eq. 1), a
functional of geometric measurements of a surface,
the discrete Helfrich Hamiltonian is composed of
discrete analog of those measurements,

EF) = Z|:I<,- / (H; — H))* + Kg/K,]

Vi

Ep
A N 5 Vv ~ N
+ / AA;F)dA — / AP(V;F)dV.
A 1%

Eq E,

3)

In comparison with Eq. 1, H; and K; are pointwise
mean and Gaussian curvature measurements on

vertices, [(H; — H,)* is the integrated Willmore mea-
sure, and the smooth surface integral is replaced by
its discrete analog (i.e. finite summation), -
(Table 2B).

The geometric properties of a given membrane
configuration can be connected to the system's energy
through constitutive relations. In this work, we assume
that the surface tension follows a linear stress-strain
model (110),

MA;F) = KAIM, @)
A
where A is the preferred surface area of the membrane,
and K is the stretching modulus of the membrane. The
osmotic pressure can be defined based on the van't
Hoff formula as

AP(ViF) = P — Pow = iRT(% —5), 5)
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equation in both smooth and discrete formulation.

where i, R, T, ¢, and n are the van't Hoff index, ideal gas
constant, temperature, ambient molar concentration,
and molar amount of the enclosed solute. Substituting
these constitutive relations (Egs. 4 and 5) into the en-
ergy (Eq. 3), we get explicit expressions for E; and E,,

5@ + A0 =4

—

E(r)

(6)
+ iRTn[r.(F) —

where r. = ¢/(n/V) is the ratio of the concentrations
of the ambient and enclosed solutions. Note that the
preferred volume, V, which is needed to evaluate the in-
tegral in Eq. 3, is related to to the parameters in Eq. 5 by
V = n/c. If the system is around the isosmotic condi-
tion (e.g., V—V), the leading order of the energy is
given as,
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016/j.bpr.2022.100062. (A-C) lllustrations of geometric primitives in
and C) triangle on a face. (D) Discrete definition of scalar edge mean
-). (E) Comparative derivation of Helfrich shape

1. (V—V)?
U1
1%

)

P

where Ky =iRTn groups the phenomenological param-
eters. Mathematically, Eqs. 4 and 7 effectively pre-
scribe a penalty-based method for area and volume
control. An alternative approach is the use of
Lagrange multipliers, which have been extensively
adopted in the literature (40,57,72).

To compute the energy of a system, we must obtain
values for several geometric measurements that appear
inthe discrete energy function (e.g.,H, K, A, V). Formea-
surements such as the volume and area, there are clear
approaches for their evaluation on a triangulated mesh:
summing the areas of the triangular faces and summing
over the signed volume of tetrahedra (Fig. 1 E, osmotic
pressure and surface tension). For other measurements
such as the discrete mean and Gaussian curvatures,


https://doi.org/10.1016/j.bpr.2022.100062

additional care must be taken. While in smooth contexts
these curvatures have unique definitions, in discrete con-
texts there are multiple approaches for their calculation.
For example, the mean curvature can be computed via
the application of the cotangent Laplacian, the kernel
of the heat equation, or fitting polynomials to a local
patch (65). As mentioned earlier, there are challenges
with these approaches that can limit their numerical ac-
curacy and obscure the connection to smooth theory.
Here using discrete exterior calculus and identification
of geometric invariants, we produce theoretically and
numerically consistent discrete expressions.

Similar to the polygonal curve introduced in Appen-
dix B, a triangulated mesh has zero curvature on facets
and ill-defined curvature on edges and vertices. Using
the Steiner view, the sharp corners formed by vertices
and edges are made smooth with portions of spherical
and cylindrical shells, which have well-defined mean
curvature (Fig. 1 D). Taking the limit as the radii of
the cylinders and spheres decrease, the leading order
contribution of total mean curvature is given by the
Steiner formula on an edge,

Lo
/Hij _ J;pj7 ®)

referred to as the edge mean curvature, where /; is the
length of edge ¢;;, and ¢;; is the dihedral angle on ¢;; (i.e.,
the angle formed by the face normals of the neigh-
boring triangles incident to ¢;) (illustrated in Fig. 1 B)
(104,105). While not necessary, a triangulated mesh
is often realized in R? via vertex positions; thus it is con-
ventional to prescribe data on vertices instead of
edges. Summation of edgewise quantities over the
“fan” neighborhood (Fig. 1 A) provides the recipe of
converting an edgewise to a vertexwise quantity,

(h=5 2 ) ©)

ejeN(vi)

where the prefactor, 1/2, accounts for fact that each
edge is shared by two vertices.

While we have an integrated mean curvature, the
discrete Helfrich Hamiltonian contains a pointwise
mean curvature squared term. To define a pointwise
mean curvature, the size of the domain occupied by
the integrated mean curvature needs to be specified
(cf., Appendix B for rationale). The area, A;, referred to
as the dual area of the vertex v;, can be defined as
one-third of the areal sum of the incident triangles
(fan illustrated in Fig. 1 A) (104,105). Applying Egs. 2
and 9 to Eq. 3, the pointwise mean curvature is thus,

H; Ly
m=lfe Y o
! ejeN()

Substituting Eq. 10 into the integrated Willmore mea-
sure term of Eq. 3, the integrated Willmore measure
can be expressed as a function of the integrated
mean and spontaneous curvature,

/(H,. - H)? = i(/ﬂ,- - /H,)z. 1)

Discrete Gaussian curvature is given by the angle
defect formula,

/K,- =2r— Y Lu (12)

fiR€N(vi)

which is a well-known quantity that preserves many
properties parallel to the smooth theory (e.g., Gauss-
Bonnet, turning number, among other invariants). One
way to derive the angle defect formula is to compute
the area of a spherical n-gon contained by a local
Gauss map of the neighboring » faces around a vertex
(104,105).

Eg. 12 provides the general geometric definition to
obtain the energetic contributions from the Gaussian
curvature terms. In this study, we consider only sys-
tems with uniform saddle-splay modulus which do
not undergo topological changes. For these systems,
the energy can be simplified based on the discrete
Gauss-Bonnet theorem, which states that

S [k=mn - 3[4 0y

vi v,eIM

where x(M) = |V| — |E| 4 |F| is the Euler character-
istic of M, a topological invariant where |V|, |E]|
and |F| represent the number of vertices, edges and
faces of the mesh respectively, and [, k¥ = 7—
> _esentv) L 1S the discrete geodesic curvature, which
measures the deviation of the boundary curve from a
straight line when the surface is locally flattened. In
summary, for this work, the Gaussian curvature term
is non-constant only when M is not closed, and the en-
ergy solely involves the boundary elements.

A numerical comparison of the discrete scalar mea-
surements with their smooth counterparts is shown in
Fig. E.1. We note that for all geometric measurements
(i.e., volume, area, and curvatures), unlike in smooth dif-
ferential geometry where their numerical evaluation
requires the introduction of coordinates, DDG measure-
ments are functions of mesh primitives. By substituting
these discrete geometric measurements from DDG
into Eq. 6 and 3, we get a numerical recipe for
computing the total system energy.
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Force from discrete shape derivative of energy

We can obtain the force by taking the negative shape
derivative of the energy. In continuous settings, the
differentiation is an infinite-dimensional problem that
requires the use of the calculus of variations and
differential geometry to find analytical expressions
(39,43,70,71) (Fig. 1 E, smooth). Deriving the forces
from the discrete energy (Eq. 3) is a much simpler
task.

Discrete forces can be obtained by taking partial de-
rivatives of mesh primitives with respect to the vertex
embedded coordinates, 7 (Fig. 1 E, discrete). Regarding
notation, despite the computational differences, the
differential operations in both the discrete and smooth
contexts are called (discrete) shape derivatives and
denoted as V;(-) due to the common geometric
meaning. We note that the computation of discrete
shape derivatives for membrane modeling has been
described previously in the literature (87,89). Also
that there are many overlapping definitions for
discrete curvature, energy, and variations thereof in
the graphics literature (111-113). Our work extends
upon the prior art that evaluates derivatives algebrai-
cally, by introducing simplifications based upon the
grouping of terms and identification of geometric ob-
jects. These simplifications have important implica-
tions for improving the geometric understanding as
well as the run-time and numerical performance of an
implementation.

At the high level, our goal is to express the forces on
each vertex, given a set of physics, using geometric
primitives and properties defined on specific mesh ele-
ments. By grouping terms, we find that the vertexwise
forces arising from the different physics can be ex-
pressed as weights that are functions of the input pa-
rameters and system configuration, multiplied by
basic geometric vectors. We will show that these terms
have an exact correspondence to terms in the smooth
shape equation (Fig. 1 E). We remark that, in some
sense, the force expressions are reminiscent of finite-
difference equations, which approximate differentials
as a linear combination of values at discrete points.
This may have implications for the suitability of
modeling smooth biological surfaces with discrete
meshes.

Force from osmotic pressure

For the smooth geometry, the shape derivative of the
enclosed volume yields the outward-pointing surface
normal with its size equal to the local area element
(114). For a discrete mesh, the shape derivative of
the volume is given by the face normal on triangular
faces with its local area element equaling to the face
area, which is referred to as the integrated face normal,
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J g (Fig. 1 E, osmotic pressure) (89,99,104,105),
where (ijk) denotes the symmetry under index permu-
tation (e.g., a;x) means a;;z = ay;). Similar to edge
values, the force normal can be converted to vertex
normal,

/ﬁ,‘ == V?[.V

where analogous to Eq. 9, the prefactor 1/3 accounts
for fact that each face is shared by three vertices.
The discrete vertex forces from the derivative of the
pressure-volume work, ffl.p, is then given by scaling it
with the uniform osmotic pressure,

/f,.” - AP/ﬁ,-. (15)

Forces from surface tension

Z / Ny = 7 Z Atjkn (ijk) »

f/keN fl/AEN vi)

(14)

Next, considering the shape derivative of the surface
energy, E;, in smooth contexts, the derivative of the to-
tal surface area also points at the surface normal, with
its magnitude measuring the size (dA) and the curva-
ture (2H) of the local patch (Fig. 1 E, surface tension)
(114). In a discrete case, we can directly compute the
derivative of total area on each vertex by summing
the area gradient of incident triangles with respect to
the vertex position; the sum is therefore referred to
as (twice of) the integrated mean curvature vector on
vertices,

/ZH

where we define [2H,;)=V;A;, and [Hy) is the
mean curvature vector on a triangle face corner. The
capillary forces from surface tension, ffl.s, are given
by scaling the integrated mean curvature vector by
the surface tension,

/ff = - A/zﬁ[. (17)

Evaluating the algebraic sum of area gradients re-
veals the “cotangent formula” applied to the vertex posi-
tions (Fig. 1 E, surface tension). From independent
derivations with unrelated frameworks (e.g., discrete
exterior calculus and FEM), discretizing the smooth Lap-
lace-Beltrami operator on a triangulated mesh produces
the cotangent formula, which is called the discrete Lap-
lace-Beltrami operator, [ A, (104,105,111). Inspecting

= > Vidy = > / 2H

fieN(vi) fiR€N(vi

(16)



the expressions in Fig. 1 E, surface tension, we see
that our discrete expression parallels smooth theory,
where the mean curvature is related to the coordinates
through the application of the smooth Laplace-Beltrami
operator,

> /21?1,,- = /AS?,- o AF = 2HR  (18)
)

e;jeN(vi

Forces from bending

To evaluate the shape derivative of the discrete
bending energy, we consider the terms from the
Gaussian and mean curvature separately. Since we
do not consider nonuniform saddle-splay modulus
and topological changes in this work, the total
Gaussian curvature only varies if the surface has
boundaries, dM (cf., discrete Gauss-Bonnet theorem
in section “Obtaining a discrete energy defined by
mesh primitives”). The shape derivative of the bending

—=b

energy requires more algebra and the introduction of
halfedges, ¢; (cf., Appendix C.1). Here we will focus
on the key results and refer the reader to the full der-
ivations for each term in Appendix C.2.

There are four fundamental geometric vectors on
halfedges that comprise the bending force at non-
boundary vertices: the mean curvature vector (see
Fig. 1 B for indices),

- 1 - _,
/2Hij = E(/ZHIUU + /ZHI'(/'/)>; (19)

the Gaussian curvature vector,

- 1
&y = 0,90 0)

and the two Schlafli vectors,

- 1
/ Sij1 = ElijVF,(sz,

- 1
/Sij,Z =5 (ljkVF,(ij + LiVeoy + ljiVF,¢ji)7

ey

which act to smooth the profile of local dihedral angles.
Note that the shape derivatives are taken with respect
to different vertices (i.e., V5, or V;j), such that the mean

curvature fﬁ,»j, Gaussian curvature f]?l;,-, and Schlafli

vectors [ §; are asymmetric under index permutation.
To account for the orientation, we refer to them as half-
edge vector quantities on ¢; (Appendix C.1). A numeri-
cal comparison of the discrete geometric vector with
their smooth counterparts is shown in Fig. E.1 and
Fig. E.2. .

The bending force [f; (Fig. 1 E, bending) can be ex-
pressed as weights, which are functions of input
parameters multiplied by basic geometric measure-
ments in scalar and vector form,

which parallels the shape derivative of the smooth
bending energy,

ViE, = Vi [/ K(H — I:I)ZdA}
M

= k[2(H — H)(H> — K + HH) + A(H — H)|dA,
(23)

where V& = V.-7iis the shape derivative in the surface
normal direction.

Comparing the smooth-discrete expressions, we
make a few observations:

e The Schlafli vector terms, S, is the discrete analog of
the smooth biharmonic term, A;(H — H), the high-
order local smoothing force. The numerical compar-
ison of these two terms, as well as results directly
obtained using cotangent formula applied on
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FIGURE 2 Overview of data flow within Mem3DG. The user provides Mem3DG with an initial condition in the form of a triangulated mesh and
vertexwise state and kinematic variables (green box). The main loop (black loop) of Mem3DG evaluates the discrete energy and forces and prop-
agates the trajectory, among other supporting steps. Modules in dashed lines are optional depending on whether the system mesh has bound-
aries and if external forces are specified. User-specified options and possible extensions of Mem3DG to accommodate various physics are
highlighted in yellow boxes. Mem3DG automatically exits the simulation when the system converges or the maximum time step is reached.

pointwise scalar mean curvature, are covered in sense since there is no well-defined vertex normal di-

Fig. E.2 and Fig. E.1.

e Eq. 23 is the normal component of the shape deriva-
tive of the bending energy; an additional tangential
component is required if surface heterogeneity ex-
ists (e.g., k is not spatially uniform) (40,65). In
contrast, the discrete shape derivative (Eq. 22) is
the total derivative in R®, which includes both the
tangential and normal components (in the smooth
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rection in discrete geometry). Depending on the
extent and symmetry of the heterogeneity, the
discrete force can point in any direction in R>.

The coefficients in Eq. 22 show an intriguing pattern
combining contributions from both v; and v;. From a
finite-difference approximation standpoint, this re-
sults in an approximation scheme for which a
rigorous error analysis has not yet been conducted.



Net force and the benefit of DDG

By summing the force terms from each physics, we
obtain the net force. Through section “Obtaining a
discrete energy defined by mesh primitives” and sec-
tion “Force from discrete shape derivative of energy,”
we identify and show a scheme where both 1) the force
is analytically derived from the discrete energy, and 2)
both the discrete energy and force mirror the smooth
theory. The entire process of defining energy and con-
duction shape derivative do not involve the introduction
of coordinate and the use of tensor algebra. Owing to
the discontinuities and limited information contained
by a discrete geometry, there are ambiguities in geo-
metric definitions that behave otherwise in the smooth
context (cf., various discrete curvature definitions for
plane curve discussed in Crane and Wardetzky (115)).
Intentional choices of certain definitions of basic
discrete geometric measurements can reveal the
connection between various definitions, preserve use-
ful geometric invariants, and most naturally reflect
the underlying physics. Here many scalar and vector
definitions of geometric measurement are connected
through the chain of shape derivatives (cf., Fig. A.2)
(105), which justifies their role in representing either en-
ergy or forces. For example, the discrete bending en-
ergy is also commonly constructed using the mean
curvature vector, fMﬁ-FI dA in literature (90,99). As
shown in section “Forces from surface tension,” the
definition of the mean curvature vector is tightly corre-
lated with the surface tension, where directionality is
embedded. The inner product used in such discrete en-
ergy definition strips away the directional information.
Instead, here we construct energy using the scalar
mean curvature, [ H, because 1) the energy is inher-
ently scalar, and 2) the discrete curvature exists on
the edges. After taking the shape derivative of the en-
ergy, the mean curvature vector appears as the effec-
tive tension component and the directional
information of the vector is used for representing the
force. Using the directional information, an arbitrary
definition of a vertex normal is avoided. When weighted
homogeneously around a vertex, each fundamental
geometric vector that composes the discrete force,
[#, [H, [K, [S, can be used to obtain a meaningful
definition of the vertex normal. The heterogeneous
weighting of these vectors around the vertex repre-
sents the incorporation of functional variation in the
tangential direction, which can be used to model het-
erogeneities in material and other properties across
the membrane (40,65). Practically, the additional struc-
ture provided by the discrete force and energy expres-
sions allows the wuser to inspect term-wise
contributions, which can lead to additional insights
and analysis. Since the terms of the discrete energy

and forces are defined locally by mesh primitives at
vertex neighborhoods, the algorithms are efficient and
straightforward to parallelize. The numerical accuracy
of these expressions is benchmarked for several scalar
and vector measurements on smooth and discrete sur-
faces shown in Fig. E.1, Fig. E.2, and later discussed in
section “Practical considerations for applying Mem3DG
to biological problems.”

Defining metrics for simulation and error
quantification

For monitoring simulation progress, exactness of force
calculations with respect to the discrete energy, and
convergence studies of computed quantities upon
mesh refinement, we introduce the following norms.

L, norm

From a PDE perspective, the vertex forces are also
called the residual of the shape equation, whose solu-
tion represents the equilibrium solution. The simulation
is terminated when the residual is smaller than a user-
specified threshold. The rationale for using the L, norm
is justified by perturbing the system configuration and
conducting an expansion on the system energy,

E(F + €VE(F)) = E(F) + ¢(VE(F),VE(F)) + O(€)

i

where we refer the inner product of the force matrix as
the L, norm of the forces. Computationally, this is
equivalent to the standard Frobenius matrix L, norm,

7, ol 7)o

Using the L, norm and Eq. 24, we can perform a nu-
merical validation of the exactness of the discrete
force calculation with respect to the discrete energy.
We expect the force to approximate the energy up to
second order with respect to the size of a perturbation.
This validation will be further elaborated in section
“Membrane dynamics with full mechanochemical
feedback.”

= E(F) + ¢

2
L o),
Ly

(24)

L1 norm

A scale-invariant L; norm is well suited to quantify the
magnitude of the error on varying domain size and
mesh resolution. Given a vertexwise local scalar mea-
surement, [a, or a vector measurement, |4, and their
reference values, [a, and [,
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where the normalizing factor, the total surface area A,
is used to obtain a pointwise estimate of the error.
The L; norm is applied in the local comparison of
discrete and smooth measurements, which we further
elaborate in section “Practical considerations for
applying Mem3DG to biological problems.”

L,

(26)

2.l

L,

SOFTWARE IMPLEMENTATION: Mem3DG

Along with the theoretical developments, we have
developed an accompanying software implementation
written in C++ called Mem3DG. Our goal in developing
this software is to enable the easy use and application
of the corresponding theory developed above to biolog-
ical problems of interest.

Mem3DG is a library that contains several compo-
nents to support this goal. Fig. 2 provides a synopsis
of Mem3DG. The input to Mem3DG includes a triangu-
lated mesh with its coordinate 7 embedded in R*. Users
can choose to use Mem3DG to construct idealized
meshes (e.g., icosphere, cylinder, or flat hexagonal
patch) as an input or to read in meshes from several
common mesh formats. Meshes are stored and
manipulated in Mem3DG using the halfedge data struc-
ture provided by Geometry Central (116). The
supported input file formats are those which are read-
able by hapPLY and Geometry Central (116,117).
Once a mesh and parameters are loaded, Mem3DG
can evaluate the discrete energy and forces of the sys-
tem. Mem3DG adopts a modular design that facilitates
the use of different energy and force components
and has utilities which help the user to specify the phys-
ics and governing parameters. Mem3DG also supports
local system simulations where the input mesh has
boundaries. Additional details about the supported
boundary conditions are given in section “Prescribing
boundary conditions with force masking.”

To perform energy minimization and time integration
of the system, various schemes have been imple-
mented. These schemes are described in section
“Time integration and energy minimization.” As dis-
cussed further in section “Practical considerations for
applying Mem3DG to biological problems,” when a
user wishes to use Mem3DG to represent complex
biological membrane geometries, additional care
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regarding the quality of the mesh is necessary.
Mem3 DG includes algorithms for basic mesh regulariza-
tion and remeshing, which can be toggled by the user to
support their applications. The simulation terminates
when it reaches the time limit or the system reaches
equilibrium, whose criteria is determined using the en-
ergy L, norm introduced in section “Defining metrics for
simulation and error quantification.” A user can choose
between several formats to output a trajectory over
time or the configuration of the local minima from
Mem3DC. In addition to the mesh outputs supported
by Geometry Central, we have also developed a
scheme for outputting mesh trajectories in NetCDF
format (118). Mem3DG can read and visualize the
output trajectories and mesh configurations using Ge-
ometry Central and Polyscope (116,119).

For rapid prototyping and enumeration of simulation
conditions, we have also developed a Python API called
PyMem3DG. The functionality in C+—+ is exposed in Py-
thon using bindings from pybind11 (120). lllustrative
examples of using both Mem3DG and PyMem3DG are
provided in the online tutorials. For the experiments dis-
cussed in this work, all of the simulations were per-
formed using PyMem3DG and the accompanying code
and initial configurations are on GitHub: https://
github.com/RangamaniLabUCSD/Mem3DG.

Defining properties of a membrane reservoir for
systems with open boundaries

To facilitate correspondence with wet experiments and
to support the reduction of computational cost, it is
possible to construct systems using meshes with
open boundaries in Mem3DG. For example, when
modeling the formation of a small endocytic bud
from a large cell, the deformation is small compared
with the broader system. If we assume that the bulk
of the cell is invariant with respect to bud formation,
the computational burden can be reduced by modeling
only the local deformation; we can assume that the
modeled patch is attached to an implicit membrane
reservoir. To define this coupled system, the constant
area (4,) and volume (V,) of the reservoir must
also be provided. The total area and volume of
the broader system is given by A = Apacn + A, and
V' = Vpatch + V., Where Apaich and Vpaien are area and
“enclosed volume” of the mesh patch respectively. In
our models, we enforce that all elements of a boundary
loop are on the same plane; this way Vacn can be
unambiguously defined as the enclosed volume when
each boundary loop is closed by a planar sheet. The
capability to model systems attached to a reservoir re-
duces the modeled degrees of freedom while enabling
intuitive physics to simplify the process of mimicking
experimental conditions using Mem3DG.


https://github.com/RangamaniLabUCSD/Mem3DG
https://github.com/RangamaniLabUCSD/Mem3DG

Prescribing boundary conditions with force masking

Mem3DG supports modeling membranes with and
without boundaries: a sphere (with no boundaries), a
disk (with one boundary), and an open cylinder (with
two boundaries). For systems without boundaries, the
discrete forces conserve angular and translational mo-
mentum of system (as was also noted by Bian et al.
(89)). Because the (discrete) potential energy is
invariant under rigid body motions (i.e., the energy of
the membrane is given only by the geometry), and the
discrete forces are analytically derived from the energy,
the discrete forces will not contribute to any rigid body
motions since these components do not change sys-
tem energy. In other words, the forces that lead to rigid
body motion are, by construction, orthogonal to the
shape derivative of the potential energy. To study sys-
tems with boundaries, Mem3 DG currently supports three
types of boundary conditions:

e Roller, where the movement of boundary vertices is
restricted along a given direction or plane.

e Pinned, where the position of boundary vertices are
pinned while the curvature is allowed to vary.

e Fixed, where both the position and the boundary cur-
vature are fixed for vertices on the boundary.

The different boundary conditions are achieved by
masking the elements of the force matrix correspond-
ing to the boundary vertices and their neighborhood.
For example, to apply roller boundary conditions, we
mask the Z-component of the force on the boundary
vertices, therefore constraining their movement to the
X-Y plane; pinned boundary conditions mask all force
components for the boundary vertices to fix their posi-
tion; fixed boundary conditions mask all force compo-
nents for the outermost three layers to fix both their
position and curvature.

Time integration and energy minimization

In this work, we use the forward Euler algorithm to inte-
grate the system dynamics and the nonlinear conjugate
gradient method to solve for equilibrium conditions.
Both solvers are complemented by a backtracking
line search algorithm, which satisfies Wolfe conditions
to support adaptive time-stepping and robust minimi-
zation (121).

The forward Euler scheme was chosen as the
simplest dynamical propagator; physically it represents
over-damped conditions where the environment of the
membrane is too viscous for the system to carry any
inertia. Mathematically, the physics is described by,

?:%/f:%/(j”#fwf’), @7)

where £ is the drag coefficient. From an optimization
perspective, forward Euler is equivalent to the gradient
descent method for minimizing an objective function,
which is the discrete energy in our case.

A second propagator is the nonlinear conjugate
gradient method for locally minimizing the discrete en-
ergy to yield the equilibrium shape of the membrane.
Since the system is nonlinear, we periodically perform
forward Euler (gradient descent) steps after several
conjugate gradient steps. This approach of iterating be-
tween conjugate gradient and gradient descent steps is
commonplace in the literature for solving nonlinear
systems (121).

We note that other time integrators and energy min-
imizers are also compatible with Mem3DG. Included in
the software are reference implementations of velocity
Verlet integration (for symplectic time integration), and
limited-memory Broyden-Fletcher-Goldfarb-Shanno al-
gorithm (L-BFGS, a quasi-Newton method to the equi-
librium shape for large-scale problems where fast
computation is needed). We do not discuss these addi-
tional solvers in this work.

Practical considerations for applying Mem3DG to
biological problems

As we have noted above, in the DDG perspective, the
mesh is the geometry and thus the formulation of the
discrete forces and energies is exact. There are there-
fore very few restrictions on the resolution and quality
of the input mesh. However, in biophysics, we often
consider biological membranes as smooth systems.
We expect that many users of Mem3DG may wish to
approximate a smooth system using our discrete
model. In doing so, they make an implicit assumption
that such an approximation is reasonable. Although
the relationships between geometric objects and their
shapes are preserved between the smooth and
discrete contexts, our ability to approximate a smooth
problem with a discrete mesh is not guaranteed.
Similar to finite differences and FEM, additional con-
straints on mesh quality and resolution must be
imposed. To verify and understand the limitations of
the assumption that the discrete mesh is the geometry
and includes all of the geometric information, we
numerically test the convergence of the discrete
guantities under variation of resolution on an oblate
spheroid mesh. The additional details regarding these
numerical experiments are presented in Appendix D.
Setting the characteristic length scale of the finest
mesh to be 47 = 1, as the mesh coarsens (i.e., mesh
size increases) & increases. Fig. 3 shows the scaling
relationship of the deviation in magnitude between
the smooth and discrete quantities. Fig. 3 A shows
the convergence property of global measurements
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FIGURE 3 Comparison of discrete quantities
with their smooth counterparts on spheroid
shape. (A) Convergence plot of global quanti-
ties, including total area, volume, mean curva-
ture (squared), and Gaussian curvature; and
(B) Convergence plot of L; norm of scalar
and vector local quantities, including the
mean curvature, Gaussian curvature, and the
biharmonic term.
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that determines the energy (Egs. 1 and 3), including the
total area, A, enclosed volume, V, and total Gaussian
curvature and mean curvature (squared), [, KdA,
J\HdA and [, HdA, respectively. Except for the total
Gaussian curvature being an exact topological
invariant, all integrated quantities exhibit approximately
second-order convergence rate.

We acknowledge that convergence of global mea-
surements does not imply that local measurements
will also converge. To validate the convergence of
local measurements, which determines the conver-
gence of local forces on the membrane (e.g., Egs.
15,17, and 22), we utilize the L; norm (Eq. 26) to eval-
uate the deviation of local quantities from their
smooth counterparts. Fig. 3 B shows the local conver-
gence plot. Similar to their global counterparts, local
scalar mean and Gaussian curvature, [H, and [K,
converge at O(h?). Fig. 3 B also shows the conver-
gence of vector quantities, which not only contribute
to the magnitude of the force but also set the direc-
tion of the force. The test shows that most vector
quantities converge slightly slower than their scalar
counterparts. Two terms exhibit poor convergence,
the Schlafli vector term in Eq. 22, H ['S, and a scalar
counterpart, [A;H. The latter term corresponds to
the direct application of the cotangent Laplacian
(Eg. 17) to the pointwise scalar mean curvature field;
this approach is not used in our framework but is
common in the literature (65). Both non-convergent
expressions are discrete representations of the bihar-
monic term, A,H, which have been noted to be sensi-
tive to noises of vertex coordinates in the prior
literature (100). Recall that the biharmonic term is
the fourth-order derivative of the embedded coordi-
nates. Although the traditional approximation theories
suggest that higher-order derivatives often exhibit
slower rates of convergence (122), to the best of
our knowledge, there is not yet a rigorous study that
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connects DDG with an approximation theory. Never-
theless, we anticipate that similar principles hold.
Two spatial plots comparing local measurements be-
tween smooth and discrete contexts are provided in
the appendix (Fig. E.1 and Fig. E.2); each test is con-
ducted using the finest mesh size (» = 1). Based on
this numerical validation, we conclude that the
computation of energy converges with a second-order
rate (Fig. 3 A). While most components of the forces
converge, the biharmonic term remains a limiting
factor.

One other practical consideration for our models is
that the Helfrich Hamiltonian, matching the in-plane
fluidity of biological membranes, has no resistance
to shearing. Without additional constraints, the
mesh is susceptible to shearing motions, which can
deteriorate mesh quality in some conditions (83).
This can degrade the implicit assumption that the
discrete mesh represents a smooth geometry. To
ensure that such an approximation can remain
valid throughout a trajectory, we have incorporated
algorithmic solutions to adaptively maintain an iso-
tropically well-resolved discrete geometry. This is
achieved by two operations: 1) mesh regularization
using local force constraints, which are common in
FEM (78,82,83,85) (Appendix E.2); and 2) mesh muta-
tions such as decimating, flipping, and collapsing
edges. Beyond regularization, these local force con-
straints can also be used to model underlying physics
of a problem of interest. For example, similar
restoring forces between vertices (Eq. E.1) have
been adopted to model actin-spectrin cortex in red
blood cell (95). Mesh mutations are also a common
practice to cope with deterioration and a means to
perturb system configuration in other mesh simula-
tions that use a Monte Carlo integration (60,89-95).
The algorithms for mesh regularization and mutation
are further described in Appendix E.
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RESULTS AND DISCUSSION

To further validate the method and to provide a sense of
how Mem3DG can be used and extended to solve more
complex physics, we apply Mem3 DG to a sequence of ex-
amples with increasing complexity. First, we model
well-studied systems with homogeneous membrane
conditions. We show that Mem3DG is capable of repro-
ducing the classical solutions without imposing the
axisymmetric constraint commonly adopted by other
solvers. The later examples set a blueprint for extending
and modifying Mem3DG for particular systems of inter-
est. We introduce new energy and corresponding force
terms to expand the formulation for complex systems
of interest. We emphasize that the goal of these exam-
ples is to illustrate the generality of the theory and soft-
ware and to outline specific steps for future extensions;
we do not perform rigorous experimental comparisons,
nor do we extract scientific insights. Additional care
must be taken to mimic specific biological experiments
for model validity, which is left for future work.

Each of the following sections considers a different
class of membrane biophysics problem of increasing
complexity in the coupling of the in-plane protein den-
sity parameter, ¢ €[0,1]. To mimic the various influ-
ences protein-lipid interactions can have on the
bilayer, the protein density can be set to influence
membrane properties such as the spontaneous curva-
ture, H(¢), and bending rigidity, x(¢). More complex
phenomena such as the production of in-plane interfa-
cial forces from membrane-protein phase separation

H(um)

FIGURE 4 Recover typical equilibrium shapes
of membranes with homogeneous material
properties. (A and B) Equilibrium solutions un-
der different osmolarity (¢) and spontaneous
curvature (H) conditions, with initial condition
of (A) Oblate spheroid and (B) Prolate spheroid.
We vary the osmolarity by adjusting the concen-
tration of the ambient solution, ¢, while holding
the enclosed amount of solute, n, constant. (C)
Equilibrium solutions of a tubular membrane
structure under variations in osmolarity and sur-
face tension.

Reference —>>

Increase
tension

(55,59,123) can also be modeled. In our final proof of
concept, we extend Mem3DG to support full mechano-
chemical dynamics, where proteins can mobilize in
and out of plane through adsorption and lateral diffu-
sion, based on its coupling with membrane material
properties and shape transformation. These scenarios
highlight the relative ease of extending Mem3DG with
additional physics and the potential utility to simulate
realistic experimental scenarios. Note that, for all of
the examples, unless otherwise specified, the bending
rigidity of membrane, «, is assumed to be the rigidity
of a bare membrane, x, = 822 x 10> pm - nN.
Despite the superior performance of the nonlinear con-
jugate gradient method in finding an energy minimizing
configuration, to maintain both static and dynamic
interpretability, we perform all simulations using a for-
ward Euler integrator unless otherwise noted. All simu-
lations presented in this work were conducted on a
standard workstation with Intel Xeon processors.
Although the numerical algorithms are amenable to
parallelization, Mem3DG is currently a single-threaded
program. Using a single core, the simulations here
complete in minutes and up to 2 hours.

Modeling spherical and cylindrical membranes with
homogeneous physical properties

We begin our examples by using Mem3DG to find the
equilibrium shapes of membranes with homogeneous
protein density, ¢. We ask, given an initial membrane
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configuration with uniform bending modulus and spon-
taneous curvature, what are the minimizers of the sys-
tem energy? The answers are the classical equilibrium
solutions to the shape equation obtained analytically
(42), and numerically using many methods with
different assumptions (39,124). We will show solutions
obtained using Mem3DG with topologies of sphere and
tube (Fig. 4). These geometries were selected not only
because of their potential for comparison with the leg-
acy literature but also because they are reminiscent of
biological membranous structures such as red blood
cell (97,98,125,126), cell-cell tunneling and tethering
(127-129), and neuron beading (130,131), among other
biological processes.

Starting with closed topological spheres, Fig. 4 A and
B shows the typical equilibrium shapes under osmotic
stress while the surface area is conserved. The
preferred area of the vesicle, A = 47 um?, represents
a sphere of radius 1 pm. This constraint is achieved
by prescribing a large stretching modulus, K4, such
that the areal strain, (A — A)/A, is less than 1%. The
strength constant of osmotic pressure, Ky is set to
be 0.1 pm - nN. Initializing the simulations from
an oblate spheroid, as the osmolarity increases (e.g.,
the normalized ambient solution, ¢/n), we recover
the well-known biconcave red blood cell shape
(97,98,106,124) (Fig. 4 A). The vesicle adopts a more
convex configuration as we increase the spontaneous
curvature, indicating an overall increase in its mean cur-
vature with the concomitant decrease of areas with
negative mean curvature (the dimple regions). In
contrast, starting from a prolate spheroid, as the spon-
taneous curvature increases, the vesicle adopts a
dumbbell configuration as the energetically preferred
state (Fig. 4 B). The size of the beads on the dumbbell
is governed by the osmolarity, ¢/n. These trends with
respect to the variations of the spontaneous curvature
and osmolarity are consistent with the analytical and
numerical results in the broader literature (42,89). Qual-
itatively the predicted geometries of closed vesicles
with homogeneous spontaneous curvature match the
predictions of a detailed benchmark of mesh-based
methods performed by Bian et al. (89).

We also modeled the shapes of membranes starting
from an open cylinder configuration under different os-
motic and surface tension conditions (Fig. 4 C). This
problem is related to a well-studied phenomenon called
the Plateau-Rayleigh instability (132,133). The Plateau-
Rayleigh instability describes how surface tension
breaks up a falling stream of fluid into liquid droplets.
Compared with a liquid stream, a lipid membrane pro-
vides additional resistance against instability due to
its rigidity. Zhongcan and Helfrich (134) obtain stability
regimes as a function of membrane bending rigidity
and spontaneous curvature using the spectral stability
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analysis (134). Although osmotic pressure is often re-
ported as an important cause of morphological insta-
bility (131,135-137), the effect of osmotic pressure is
difficult to isolate in wet experiments because the
change to osmolarity affects the surface tension,
which is a key driver of the instability. In our simula-
tions, the two effects are decoupled, making the inves-
tigation of individual contributions to the morphology
possible. All shapes in Fig. 4 C evolve from the initial
tubular mesh with radius of 1 pm and axial length of
19.9 um, under a constant spontaneous curvature of
1 um~". These simulations are set up as local models
(cf., section “Defining properties of a membrane reser-
voir for systems with open boundaries”) where the
explicit mesh is assumed to be coupled to a membrane
reservoir. Additional geometric information defining
the membrane reservoir and boundary conditions are
required to initialize the local model. The tubular struc-
ture is considered to be a cylinder that connects two
otherwise detached domains (e.g., membrane reser-
voirs), which combined have a total reservoir volume,
V, = 4.19 um®. The strength of osmotic pressure, Ky,
is set to be 0.01 um - nN. To isolate the effect of os-
motic pressure and surface tension on the morphology,
we prescribe a specific surface tension that we as-
sume to be invariant with respect to changes to the sur-
face area. On the two boundary loops of the mesh, we
apply roller boundary conditions, which restrict the
movement of boundary vertices in the axial direction.
The length of the tube is thus constrained to be
19.9 um, while the radius of the tube including the
boundaries is free to shrink or expand.

As the osmolarity increases from the reference con-
dition (¢/n = 0.022 um~3) (Video S1), we obtain near
constant-mean-curvature surfaces such as unduloid
pearl structure at ¢/n = 0.030 um~2 (Video S2), and
cylindrical tube at ¢/n = 0.051 um~3, which follow
the trends from both analytical (42,138) and experi-
mental observations (19,131,135). As we increase the
surface tension from the reference condition
(A=1x10"7 nN - pm~") to a tension-dominated
regime (A = 1x10"% nN - um~'), we obtain the
beads-on-a-string structure that minimizes the sur-
face-to-volume ratio (Video S3). The formation of
beads-on-a-string is an interesting configuration that
has been identified in biological membranes and other
systems (130,131). Note that our simulations revealed
a symmetric metastable state where two large beads
form at either end (Appendix A), connected by a thin
tube, prior to adopting the asymmetric conformation
shown in Fig. 4 C. We believe that discretization arti-
facts such as mesh mutations act as a perturbation
to break the symmetry of the metastable intermediate
and transition the membrane to a single bead configu-
ration (see Fig. A.1).



These examples with uniform spontaneous curvature
profile prove the ability of Mem3DG to reproduce the ex-
pected classical solutions for spherical and tubular
membrane geometries. Note that no axisymmetric
constraintis imposed in these simulations. Mem3 DG sol-
ves the system in full three dimensions and the symmet-
rical configurations are due to the problem physics. The
ability to adapt to changing and complex curvatures of
the membrane using discrete mesh is achieved using
mesh mutation and other manipulations within solver
steps. For example, the pinched neck regions of the
tubes are automatically decimated with finer triangles
than other regions of the mesh. For a global closed
membrane simulation such as in Fig. 4 A, B, we do not
remove any rigid body motions from the system; since
the forces from DDG are exact and we used the forward
Eulerintegrator, no artificial rigid body motions are intro-
duced throughout the simulation. These examples
show that that the derivation of the discrete energy
and forces along with the software implementation
are accurate and proceed to test Mem3DG with more
complex examples.

Modeling endocytic budding mechanisms

Our goal is to highlight the potential of Mem3DG and its
associated framework for investigating mechanical
phenomena relevant to cellular biology. Endocytosis
is a cellular process in which cells uptake cargo from
the extracellular environment; the transported material
is engulfed by the cell membrane, which then buds off
to form a vesicle (13). Endocytosis occurs through
various mechanisms, including clathrin-mediated
endocytosis (13,139). It has been shown that clathrin
aggregates on the plasma membrane, helping to
deform the membrane and form a spherical bud
(9,13,59). However, the specific mechanisms of how
membrane-clathrin interactions facilitate membrane
curvature generation remain unresolved. While there
is significant literature investigating the many pro-
posed mechanisms, here we develop models to
demonstrate the bud formation via spatially localized
spontaneous curvature, combined with a line tension
term arising from phase separations on the membrane
(140).

We model endocytic budding on a circular patch with
radius 1 um (a disc with one boundary loop). We as-
sume that the patch is a local system which is coupled
to a large vesicle (section “Defining properties of a
membrane reservoir for systems with open bound-
aries”). A heterogeneous protein density, ¢ [0, 1], is
applied to mimic the distribution of clathrin and other
scaffolding proteins. Shown in Fig. 5 A, the protein den-
sity is high (¢ = 1) toward the center of a geodesic
disk with radius 0.5 pm) and decreases toward the

boundaries (¢ = 0). During simulation, the geodesic
distance to the center of the patch is periodically
computed using the heat method (141). Vertexwise ¢
is assigned based on the stair-step profile smoothed
by the hyperbolic tangent function applied to the
geodesic distance. Each experiment is initialized as a
flat patch and the displacement of boundary vertices
is restricted using a fixed boundary condition. Since
the patch is viewed as a small piece within a larger
closed vesicle reservoir, we assume that the surface
tension is constant.

A common model to account for the preferential
bending owing to protein-membrane interactions is
through the spontaneous curvature; we assume
H(¢) = H,. ¢, where H. = 6 um~" is the spontaneous
curvature imposed by the membrane protein coat. Pro-
teins such as clathrin are known to form stiff scaffolds
on the membrane. Similar to the spontaneous curva-
ture, we can assume a linear relationship between
bending rigidity and protein density, k(¢) = &, + k. ¢,
where constant «, is the rigidity of the bare membrane,
and «, is additional rigidity of the protein scaffold.

Shown in Fig. 5 A-C and Video S4, is the control
simulation where we set the contribution to the rigidity
from protein to be the same as that of the raw mem-
brane, k. = k. Fig. 5 A shows the initial flat configura-
tion of the control experiment; the color bar shows the
heterogeneous spontaneous curvature resulting from
the prescribed protein density profile. In the control
experiment, the bending force is resisted by the
surface tension (Fig. 5 C) until, at the final frame in
Fig. 5B (t = 5),the membrane reaches the equilibrium
configuration where the surface tension cancels with
the bending force. In a second model, we assume
that the scaffolding proteins are much more rigid
than the bare membrane, x. = 3«;,. Fig. 5 D—-F and
Video S5 show the bud formation due to this increased
protein scaffolding effect. The greater rigidity results in
an increase of initial bending energy, which outcom-
petes the resistance from the surface tension (Fig. 5
F). Fig. 5 E shows the shape evolution from a flat patch
to a successful bud with a pinched neck. Fig. 5 D shows
the signed projection of the bending force onto the ver-

tex normal, [f? = fff-ﬁ,-, at T = 15. (Outward-point-
ing angle-weighted normal; the same applies to the
interfacial line tension.) We can see an “effective line
tension” driven by the heterogeneous spontaneous
curvature that constricts the neck. This phenomenon
is theoretically explored in detail by Alimohamadi
et al. (58).

For our third model, based on the prior observations
that protein phase separation on surfaces can lead to a
line tension (140), we incorporate a Ginzburg-Landau
interfacial energy into the system,
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where 7, referred to as the Dirichlet energy constant,
governs the strength of the energy penalty, and V; ¢
is the discrete surface gradient of the protein density
profile. The term is similar to previous modeling
efforts by Elliott and Stinner (80) and Ma and Klug
(79) using FEM; because we use the protein phase sep-
aration as a prior, we exclude the double-well term,
which models the thermodynamics of phase separa-
tion, and incorporate only the Dirichlet energy compo-
nent that penalizes the heterogeneity of membrane
composition.

Defined as the slope of the linearly interpolation of ¢
on faces of the mesh, fj;, the discrete surface gradient
of the protein density is,

1 )
Vidi = 5 > $E (29)
P e N (fn)

where following illustration in Fig. 1 C, ¢ is the vector
aligned with the halfedge ¢;, with its length of /;, and
(-)* represents a 90° counterclockwise rotation in
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the plane of fj;. The resulting line tension force ffd
is then the shape derivative of the Dirichlet energy,
V:E,4, which acts to minimize the region with sharp het-
erogeneity. The detailed derivation of the shape deriva-
tive is elaborated in Appendix C.3, where we follow the
formulaic approach by taking geometric derivatives of
basic mesh primitives shown in Eq. C.13. Note that
despite bearing the same name, this line tension force
differs from from those resulting from line energy,
which prescribes the line tension energy based on the
interfacial edge length (55,142). The line tension force
from Dirichlet energy is used to model the out-of-plane
component resulting from either entropic or enthalpic
repulsion at the interface between heterogeneous
membrane protein aggregates. The Dirichlet energy is
based on a 2D field variable and the line tension is
only effective when phase separation of the field vari-
able occurs, where the interfacial line, or, more pre-
cisely, thin areal band, between phases exists. With
the introduction of protein evolution later in sections
“Protein aggregation on the realistic mesh of a den-
dritic spine” and “Membrane dynamics with full mech-
anochemical feedback,” thickness depends on the
competition between the Dirichlet energy and other
competing aggregational potential.



Fig. 5 G-I and Video S6 show the trajectory where
we used control bending rigidity, k. = «;, and the addi-
tional interfacial line tension, n = 5 x 10=* pm - nN.
We find that the interfacial line tension, jointly with
the bending force, lowers the system energy and
helps the formation of a spherical bud (Fig. 5 I and
H). Fig. 5 G shows the snapshot (+ = 7) with the color
map representing the signed normal projection of the
interfacial line tension that acts to constrict the neck.
These examples of endocytic bud formation help to
illustrate the utility of Mem3DG and the accompanying
theoretical framework. Since physical parameters are
assigned on a per-vertex basis, it is straightforward
to incorporate heterogeneity such as the nonuniform
bending rigidity and spontaneous curvature. In smooth
theory and its derived discrete mesh models, when the
membrane is heterogeneous, it is required to decom-
pose the force separately in normal and tangential di-
rection (40,65). In contrast, the general derivation of
the discrete bending force following the formalism of
DDG permits modeling membrane with heterogeneous
material properties without any modification to its
formulation (section “Forces from bending”). The intro-
duction of Dirichlet energy and line tension force
serves to highlight the relative ease to extend the
modeled physics.

Protein aggregation on the realistic mesh of a
dendritic spine

While the prior examples have focused on the mechan-
ical response of the membrane given a bound protein
distribution, we can also model the inverse problem.
Given the membrane shape, how do curvature-sensing
proteins diffuse in the plane of the membrane and
distribute over the domain? And how does the resultant
protein distribution influence the stresses of the sys-
tem? To model the protein dynamics, we use three
terms corresponding to protein binding, curvature
sensitivity, and lateral diffusion.

To model the binding of proteins to the membrane,
we assume that the energy of adsorption, ¢, is constant
and uniform across the surface such that the discrete
adsorption energy is,

E, =) / b (30)

where ¢, is an order parameter representing the area
density of protein at each vertex. Taking the derivative
with respect to ¢, referred to as the chemical
derivative,

W= -, = - [ G31)

we obtain the adsorption component of the chemical
potential. To account for protein curvature sensitivity,
we find the chemical potential of the bending energy,

Mnp = _VzbEb
o . (32)
= /[ZK,'(H,‘ — H,‘)Vd,H,‘ - (H[ - H:) V¢Ki]7
where we assume that Vyk; = ., and V4H; = H.

where k. and H, are constant parameters defined in
Section “Modeling endocytic budding mechanisms.”
The first term of Eq. 32 endows the protein with curva-
ture-sensitive binding. The second term of Eq. 32 is the
shape mismatch penalty; considering the binding of a
rigid protein that induces a significant spontaneous
curvature change, if the curvature of membrane is far
from this new spontaneous curvature, then the shape
mismatch between the membrane and proteins will pre-
vent binding. Alternatively, if the protein is more flexible,
a shape mismatch results in a small energetic penalty.

The in-plane diffusion of the protein is accounted for
by the chemical derivative of the smoothing Dirichlet
energy, E,,

W = _V,E, = - / A, (33)

where 7 is the same Dirichlet energy constant intro-
duced in Eq. 28 that governs the strength of interfacial

line tension, ffd. The total chemical potential captures
the bending, adsorption and diffusion components. A
mobility rate constant, B, determines the time scale
of the chemical response,

¢ = Bu = B(w, + m, + 1) (34)

We investigate the influence of curvature-dependent
binding to a realistic dendritic spine geometry, which
was reconstructed from electron micrographs and
curated using GAMer 2 (Fig. 6 A) (32). A summary of
the parameters used in the simulation is shown in
Table 3. The mean curvature of the spine geometry is
shown Fig. 6 C. We isolate the effect of curvature-
dependent binding by assuming that the shape of the
spine is fixed and impose Dirichlet boundary conditions
at the base on the spine to fix the protein concentration,
¢ = 0.1 (Fig. 6 A).

Starting from a homogeneous protein distribution,
¢o = 0.1, Fig. 6 B and Video S7 show the evolution
of the protein distribution and a trajectory of the sys-
tem energy. Note that, for simplicity, we have turned
off the adsorption energy term since it only shifts the
basal protein-membrane interactions, which will also
be set by the Dirichlet boundary condition. Mem3DG
constrains the range of ¢ € (0, 1) using the interior point
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t = 0, (E) the line tension force produced by the equilibrium protein distribution, and (F) the difference in the bending force profile produced by

final protein distribution as opposed to the initial distribution.

method (121). Due to the curvature sensitivity of
the protein, illustrated by the snapshots (Fig. 6 B,
T = 350) representing the final protein distribution,
the protein aggregates toward regions of high curva-
ture (e.g., on the spine head).

Although the proteins can reduce the bending energy
by modulating the local bending modulus and sponta-
neous curvature, the protein distribution at equilibrium
does not cancel out the bending energy. We expect
that the Dirichlet energy term, which limits ¢ to be
smooth across the geometry, restricts the protein
from further aggregating to the extent required to
cancel out the bending energy. The components of
forces on the initial and final configurations of the
spine are compared in Fig. 6 D—F. The initial homoge-
neous protein distribution has no line tension forces
and a bending force shown in Fig. 6 D. After the protein

TABLE 3 Parameters used in section “Protein aggregation on the
realistic mesh of a dendritic spine”

Parameters Values

%o 0.1

Ke 0OnN - pm

H. 10 um™"

B 3nN"" - pym~' . 577
n 0.07 um - nN
20 Biophysical Reports 2, 100062, September 14, 2022

distribution reaches the steady state, line tension
appears in response to membrane heterogeneity
Fig. 6 E. We hypothesize that, similar to section
“Modeling endocytic budding mechanisms,” the line
tension constricts the neck of the spine and helps to
support the cup-like structures in the spine head. While,
in most regions, the distribution of proteins reduces
the force, several regions experience increased stress
Fig. 6 F. Note that the magnitude of the forces gener-
ated by proteins in this model is orders of magnitude
smaller than the initial bending force. Thus, this
example demonstrates that Mem3DG can be used on
meshes imported from realistic geometries of cellular
substructures.

Membrane dynamics with full mechanochemical
feedback

In this section, we will demonstrate the use of Mem3DG
to model the complete mechanochemical feedback of
a protein-membrane system. For the following simula-
tions, not only can proteins bind in a curvature-depen-
dent manner but the membrane can also deform,
leading to a feedback loop. We have introduced all of
the force terms in previous sections except the shape
derivative of the adsorption energy,



(35)

which accounts for the change in the area of protein
coverage (i.e., expanded coverage if £ <0).

Revisiting the claim that all discrete forcing is exact
with respect to the discrete energy, we validate by
examining the convergence of the forcing terms with
respect to the size of perturbation to the system
configuration, € (Fig. 7 A). This is based on the leading
order expansion done in Eq. 24, which concludes that
the forcing terms are exact if their rate of convergence
is at least second order. Shown in Fig. 7 A, this is true
for all forcing terms; note that, since the adsorption
energy, E,, is a linear function with respect to ¢, u®
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can be determined to the machine precision for all
perturbation sizes. A meaningful discrete-smooth
comparison of all terms in the energy and forcing
similar to section “Practical considerations for
applying Mem3DG to biological problems” requires
the analytical solutions of the bending force and inter-
facial line tension arising from the spatially heteroge-
neous membrane properties, which, to the best of
our knowledge, are not available. In section “Modeling
endocytic budding mechanisms,” we introduced a het-
erogeneous membrane composition as a static prop-
erty. By prescribing the protein density profile, we
can get hints about how to form membrane buds
from a patch. Here we lift this assumption and simu-
late the dynamics of osmotic pressure-driven budding
from a vesicle. The dynamics couples the protein-
membrane mechanochemical feedback and includes
protein binding and diffusion introduced in section
“Protein aggregation on the realistic mesh of a
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FIGURE 7 Modeling budding from a vesicle driven by the full mechanochemical feedback of membrane-protein interactions. (A) Validation of
the exactness of the discrete forcing with respect to the discrete energy. The terms correspond to forces from bending f;, tension area f;, pres-
sure-volume ,, Dirichlet f;, and protein binding f,. 4, 13, and u, are the chemical potential of diffusion, bending, and binding respectively. (B) The
time trajectory of budding dynamics in hypertonic, isotonic, and hypotonic osmotic conditions. (C) The final snapshot of the system configura-
tion under hypertonic, isotonic, and hypotonic conditions. (D) Similar geometries to those shown in (C) have been observed in experiments by

Saleem et al. (59

).
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dendritic spine.” The expressions of discrete free en-
ergy and forcings do not change but we allow the
membrane configuration and protein density to
interact and evolve simultaneously.

We start each simulation from a sphere with a
uniform protein concentration, ¢ = ¢, = 0.1. We
consider the evolution of the system in different
osmotic conditions: hyper-, iso-, and hypotonic, V =
2.91,3.95 and 4.99 um?, respectively. Additional param-
eters for these simulations are given in Table 4. Fig. 7 B

-2
shows plots of the mechanical, ||f]|,,, and chemical

response, ||;u||i2, along with the protein density,
(dmax + ®min)/2, Over the trajectory for each osmotic
condition. Note that under hypo- and isotonic condi-
tions, the system reaches the (quasi) steady state
where both the shape and protein distribution stabilize,
while, in a hypertonic solution, the system continues to
experience strong mechanical force and protein
mobility, which we expect to drive further morpholog-
ical changes of the membrane beyond our simulation
stopping point. Fig. 7 C shows the final snapshot of
each simulation across the osmotic conditions with
the protein density represented by the color map. In hy-
pertonic conditions, the osmotic pressure provides suf-
ficient perturbations to membrane morphology, which
initializes the positive feedback loop between mem-
brane curvature generation and protein aggregation.
This mechanochemical feedback jointly promotes the
outward bending of the membrane and results in
bud formation (Fig. 7 C, hypertonic; Video S8). Under
isotonic and hypotonic conditions, the osmolarity
does not permit the large change in the volume
required to form spherical buds with a thin neck. In hy-
potonic condition, the pressure-tension balance pro-
vides substantial stability to the initial spherical
configuration. In comparison, in the isotonic condition,
the comparable competition between the chemical and
mechanical response leads to a patterned protein dis-
tribution and an undulating morphology (Fig. 7 C, hypo-

TABLE 4 Parameters used in section “Membrane dynamics with
full mechanochemical feedback” for models with full
mechanochemical feedback

Parameters Values

on 0.1

K, 8.22 x 1075 um - nN
H. 10 pm ™"

Ky 0.5nN - um

K 1nN - pm™’

B 3nN"" - pym™ - 577
£ 1nN-s-pm™’

€ —1x1073nN - um
n 0.1 um - nN

v 2.91, 3.95, and 4.99 um?®
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tonic; Video S9). This example illustrates the possibility
to utilize Mem3DG to model a full mechanochemical
feedback between membrane and protein. Although
we do not intend to replicate the exact experimental
conditions and assumptions, the geometries obtained
from these simulations resemble the shapes obtained
by Saleem et al. (59) who investigated budding from
spherical vesicles under differing osmotic conditions
(Fig. 7 D) (59).

SUMMARY

In this work, we introduce a new perspective for con-
structing a 3D membrane mechanics model on
discrete meshes. The goal of our approach is to close
the gap between existing discrete mesh-based models
(60,86-96,99,102,103) and the smooth theory. Specif-
ically, we seek to advance the discussion behind the
choice of algorithmic approaches for computing geo-
metric values required for the discrete energy and force
(65,89,99,100). We start by writing a discrete energy,
Eg. 3, mirroring the spontaneous curvature model.
Then using the perspective of DDG, we show that there
is a formulaic approach for deriving the corresponding
discrete force terms based on fundamental geometric
vectors. By identifying geometric invariants and
grouping terms, the resulting discrete forces have
exact correspondence to the traditional smooth theory.
This helps us to facilitate the comparison between
smooth and discrete contexts enabling new geometric
perspectives and understanding of numerical accu-
racy. Moreover, the discrete force terms are functions
of readily accessible geometric primitives, and the
formulation is amenable for efficient implementation
and extension.

We have produced a reference software implementa-
tion called Mem3 DG. Using Mem3 DG, we validate our the-
ory by reproducing the solutions to the classical shape
transformations of a spherical and tubular vesicle. We
further demonstrate the derivation and incorporation of
additional physics terms to model protein-membrane
interactions. Following our formulaic approach using
DDG, we derived the discrete analog of various physics,
such as the interfacial line tension, surface-bulk
adsorption, protein lateral diffusion, and curvature-
dependent protein aggregation. To exemplify all the
introduced physics, the full mechanochemical coupling
between the membrane shape and protein density evo-
[ution results in protein localization, pattern formation,
and budding. These examples serve to highlight the
extensibility of the framework, which does not require
the introduction of coordinates and advanced tensor
calculus commonly needed to solve problems on arbi-
trary manifolds. The software implementation Mem3DG
was designed to facilitate coordination between



theoretical modeling and wet experiments; we hope to
support the modeling of scenes with well-resolved pro-
tein-membrane interactions such as in the electron
tomograms (143). We expect that as the advances in
biophysical modeling and membrane ultrastructure im-
aging progresses, Mem3 DG Wwill emerge as a useful tool
to test new hypotheses and understand cellular
mechanobiology.

APPENDICES
A. Supplemental figures
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manifolds reveals no useful information about the geometry of the
discrete curve. We must find another geometric relationship that
can translate between smooth and discrete contexts to maintain
the geometric connection.

One relationship from smooth differential geometry is the equiva-
lence of the integrated curvature and the turning angle v (i.e., the total
angle by which the tangent vector of the curve turns over some
domain /). Returning to the discrete context, we can seek to preserve
this relationship between the integrated curvature and turning angle
by finding a compatible definition. Since the discrete turning angle,
¥;, between two connected edges of the discrete polygonal curve is
well defined, we can set the discrete curvature, [C, of a vertex, v;,
to be

FIGURE A.1 A symmetric metastable state
with two beads instead of a single larger bead
is observed, prior to collapsing to the solution
shown in Fig. 4 C, high tension.

Smooth — Discrete FIGURE A.2 Steiner's formula in continuous
and discrete geometry: chain of smooth and
vol(M) = l/ #eFdA ZV()ijk discrete shape derivatives of integrated geo-
3.Jm Fige metric measurements (144).
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B. Rationale for integrated measurements in discrete
contexts

The rationale for why an integrated measurement in discrete con-
texts is the natural counterpart to pointwise measurements in
smooth contexts can be demonstrated by considering the curvature
of a discrete polygonal curve. If we attempt to define the curvature,
C, of the discrete polygonal curve in a naive pointwise manner,
following the procedure in smooth settings, we will find zero curva-
ture along edges and infinite curvature (owing to the discontinuity)
on vertices. Thus the traditional view of curvature from smooth

5[5 (e 5 )

B.1)

We note that the notation for the discrete curvature, ([C), is
used only in this illustrative example; in the remainder of the text,
we will omit the parenthesis and use the simplified notation, [ C;.
To make sense of the integral over a discrete object, additional
care must be taken to represent the curvature from a distributional
sense (104). This is related to traditional approximation methods,
such as the point allocation method, which bridges a smooth and
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discrete problem by convoluting the smooth problem with impulse
functions (e.g., the Dirac delta function) at a finite number of loca-
tions (122).

As we have shown, integrated geometric measurements enable us
to preserve geometric relationships (from smooth contexts) for
discrete objects, and are thus preferred over pointwise definitions.
Nevertheless, we often require a pointwise discrete measurement for
use in algorithms and visualization. An integrated measurement can
be converted to a meaningful pointwise discrete measurement by
normalizing the value over a domain. For the discrete polygonal curve,
the domain can be the dual vertex length, /; (i.e., the discrete analog of /).
I; is given by half of the sum lengths of the two incident edges. A point-
wise curvature on the vertex v; is then given by,

Cl' = /C,/l, = K[/,/[, (B2)

Another rationale for using an integrated value for a discrete geo-
metric measurement is that we can arrive at the same definition
from multiple perspectives. Returning to the definition of the curva-
ture of a polygonal curve, without introducing the turning angle, we
can arrive at the same result by adopting the Steiner view
(104,145) (we use the Steiner view to define the discrete curvature
of a surface in section “Obtaining a discrete energy defined by
mesh primitives”). In the Steiner view, we replace the sharp vertices
with a smooth circular arc with radius ¢ such that the discrete
geometry is made smooth such that the curvature is well defined
everywhere. As the only curved section, every circular arc has a
discrete (integrated) curvature,

/C = /C ds = Carclare = %(a’l/) = v, (B.3)

where Cac = 1/€is the curvature of the circular arc, and lc = ey is
the arc length. We see that, in the Steiner view, the integrated curva-
ture is still equivalent to the turning angle. Following similar logic,
other discrete definitions are described in section “Obtaining a
discrete energy defined by mesh primitives” and the DDG literature
(104,105).

C. Discrete shape and chemical derivatives of
discrete energy

C.1. Halfedge on a triangulated mesh

FIGURE C.1 Schematics for halfedges on a triangulated mesh.
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A scalar quantity on an edge is symmetric with respect to index
permutation. For example, the scalar mean curvature (Eq. 8),

Lo,
/Hij = /Hji = j;Dj'

However, as we will show in detail in the following sections, this
symmetry does not apply to vector quantities, which compose the
discrete shape derivative of the energy, force. For example, the corre-
sponding mean curvature vector,

[ [ i

To highlight the directionality of vector quantities and disambig-
uate the notation, here we review the concept of a halfedge on
a triangulated mesh. Given any non-boundary edge, ¢;, on a
manifold mesh, there exits two associated halfedges, ¢; and ¢;
(Fig. C.1). This convention leads to an oriented (counterclockwise)
halfedge loop on each triangle face and subsequently a well-
defined 1) 90° counterclockwise rotation of the halfedge in the
plane of the face (e.g., ¢;—e¢j), and 2) face normal (outward)
based on the right hand rule (Fig. C.1). Beside being used to
differentiate vector/scalar quantities, the concept of halfedge is
widely adopted data structure for managing connected graphs, or
meshes, for which we refer the reader to the broader literature
(116,146).

(C.1

(C2)

C.2. Deriving the bending force as the shape derivative of
bending energy

The geometric derivatives of mesh primitives, including edge length, /,
dihedral angle, ¢, and vertex dual area, 4, are given as

—

€
Vil = l—, (C.3a)
ij
1 o o
V?,’@ij = E (COtL,'jk}’lijk + COtL,-ﬂn,-,]), (C.3b)
1 -
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(& +2), 30

AN =

> Vidy =

_f,'jkEN(E,‘j)

W =

where 7 is the unit normal vector of the face fj;, and ;s the vector
aligned with the halfedge, ¢;;, with its length of /; (147). The indices
and nomenclature in Egs. C.3b, C.3c and C.3e are illustrated in the
diamond neighborhood (Fig. C.1) and those of Eq. C.3d are illustrated
in the fan neighborhood (Fig. 1 A).



To simplify the expression and provide more structure for the sub-
sequent discrete variation, it is convenient to define some funda-
mental curvature vectors,

(C.5)

!

Note that, unlike translating edge values, there is no prefactor 1/2

> o

e,,eN

/2]_[[] = l(VF-Aijk + VFAijl> = 1 gi + gﬁ for translating halfedge values because each halfedge is uniquely
2\ 7 ' 4\~ - associated with one vertex. The translated curvature vectors on a ver-
C4 tex cane compared against vertexwise smooth analytical solutions
(C.4a) as benchmarked in section “Practical considerations for applying
Mem3DG to biological problems.” Now we have all of the elements
needed to derive the derivatives of the discrete Willmore bending en-
1 ergy. Because the discrete energy is locally supported by the vertex,
/K,y = _(pijvfjltj (C.4b) v;, and its 1-ring neighbors, v; € N(v;), we can separate them into the
2 “diagonal” term, and “off-diagonal” term,
i - 7N\2 4 (=
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7 \2 7\ 2 C.6
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- 1 1 iR i Using the derivatives of geometric primitives in Eq. C.3, we can
/SUJ = 211 V'l(pu = 2 <COtL"/’CnU’C + COtLU’””/‘) assemble the derivatives of local pointwise mean curvature for
both the diagonal term,
(C4o)
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where the mean curvature vector, [ A, results from area gradient; = </K1/ + / i, 1) -7 i/ Hj;,
Gaussian curvature vector, f[? and the Schlafli vector, f§ consist "UEN

of the two components of the variation of total mean curvature, (C.7)
%Ze”l,-,(p{,-. The asymmetry of vector quantities in Eq. C.4 under index
permutation (Eq. C.2) arises from the vertex we take the shape deriv- and for the off-diagonal term,
ative with respect to (i.e., v;, or v;); because of the asymmetry, we can
associate each Schlafli vector with a unique halfedge. Similar to the
1 Loy
ViH; = >V A
areN(v)
1 H.
= 1A (ljkVF,-(ij + iVi, @y + (P”V i + ZjiVF,(Pji) - X]VﬁAj €3
vl '
1 - - 4 .
= 2 Kij+ [ Sia | = 3H; | Hi-

translation from edge values to vertex value (Eq. 9), we can also
translate the halfedge value to vertex value by summing all halfedge

values over the fan neighborhood,

When written in the halfedge form, factoring out the fundamental
curvature vectors introduced in Eq. C.4, we obtain the discrete
bending force as
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When the surface is not closed, boundary vertices, v;ed M,
experience an additional force from the Gaussian -curvature
component,

77 = RHS of Eq. (C.9)

(C.10)
+ > (= 1Vi Ly, viedM,
j}jAeN(v,-)
where p is the number of boundary vertices in face f;x, and
L,‘j‘k |f Vj,Vk$aM,
L-fi/’k = Likj if V; € aM, (C 1 1)
V4 ijk if Vi € oM.

C.3. Deriving the line tension and diffusion as the shape and
chemical derivatives of the Dirichlet energy

Since the discrete Dirichlet energy is constructed on the triangular
face and therefore does not involve any neighborhood, we simplify
the notation by adopting the convention illustrated in Fig. 1 C. The
gradient of protein density is given by the slope of the fitted plane

v< NS ¢ké'¢>
+drdiei — 2¢,9;¢;

+z¢,-¢,-||a-||(—a-cos4k n ||a-||vf,.<cos4k>)

where we adopt the counterclockwise convention (e.g., & = &) and
(-)* represents a 90° counterclockwise rotation in plane of the
face, fix.

C.3.1. Line tension from the shape derivative of the Dirichlet
energy. Substituting the definition of the discrete gradient into
the Dirichlet energy (Eq. 28), we expand the energy in terms of
mesh primitives, whose geometric derivatives are given in Eq. C.3.
Additional formulae are needed to compute the geometric derivatives
of the outer angles of the triangle (Fig. 1 C)

Vily = 2 (C.13)
1€l

VoL = L% o (C.13b)
lléll

V. L = —(V,fiLk v, 4,), (C.13¢)

which arise from the calculation of the L, norm of the gradients as the
result of vector inner product. When combined, the geometric deriva-
tives for the quadratic gradient term is

(C.14)

#2006 (005 2, + 6195 (c052,) )

+z¢,—¢k( & lllcos £, + ¢ [ewcosz, + ||a|||é'k||v,-,.<cos4f>)

over the vertexwise protein density, which is piecewise constant for
each face,

=1
d)k ek )

(C.12)

e en(fin)
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Then we can get the final shape derivative by combining the area
gradient, or the mean curvature vector (Eq. C.4).
C.3.2. Surface diffusion from the chemical derivative of the
Dirichlet energy. Inthe case where we are evolving the protein dis-
tribution, we need the chemical derivative of the Dirichlet energy.
Before we look into the discrete case, we can first tackle the problem



in the smooth setting, which is a classic textbook example. Using the
Green's first identity, or integration by parts on a 2-manifold,

/ (VA + Yy Vp)dA = % YVp-7idS, (C.15)
M IM

and ignoring the boundary term at the right hand side, we arrive at an
alternative expression for the Dirichlet energy,

1 1
B = 5[ vl an = =3 [ worgan cio
M M

The same procedure can be followed in the discrete case. The
discrete Dirichlet energy (Eq. 28) can be written in matrix form,

1 T
E, = -n1¢"G TG

> (C.17)

where G is the gradient tensor, which maps scalar value on vertices to
vector values on faces, and T = diag(4™°) is the |f|x |f| diagonal
matrix with entries corresponding to the area of each mesh triangle
face. Through integration by parts on discrete geometry, the discrete
Dirichlet energy can be equivalently expressed as

1 ~
Ed = _TI¢TL¢5

> (C.18)

which is a quadratic form with respect to the cotangent Laplacian
matrix, L (104,105). The chemical derivative of the Dirichlet energy,
or the diffusion potential, is

W= Vb = = [ Mg = —ulg. €19)

In other words, the chemical gradient ngg of tThe Dirichlet energy is
the diffusion equation. Notethat L = G TG, G isreferred to as the

discrete divergence operator, which maps face vectors to scalars on
vertices (146).

D. Discrete-smooth comparison on spheroid

The smooth-discrete comparison is done on the spheroid with the
parametrization,

(x,y,z) = (acos B cosf,acossinf,csinB), (D.1)

where ¢ = 1, b = 0.5, 8 is the parametric latitude and 6 is the
azimuth coordinate. All geometric measurements of the smooth
geometry used for benchmarking were obtained using the
symbolic algebra software Sympy. The corresponding discrete
measurements are computed using Mem3 DG, whose input spheroid
mesh is mapped from a subdivided icosphere. The subsequent
error norms for local measurements are computed based on
definitions used in section “Defining metrics for simulation and error
quantification.”

E. Mesh regularization and mesh mutation

E.1. Mesh mutation

Mesh mutation and refinement in combination with vertex shifting are
the default methods to ensure that the mesh remains well condi-
tioned and well resolved during simulation. Mesh mutations include
edge flipping, collapsing, and splitting, which change the connectivity
of the mesh. Vertex shifting moves the vertex to the barycenter of the
fan neighborhood without changing the mesh topology (Fig. 1 A).
Mem3DG has a suite of possible criteria to initiate mesh mutation.
Here we list the most important ones: 1) flip the edge of the non-De-
launay diamond neighborhood (Fig. 1 B), 2) collapse the shortest
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FIGURE E.1 Pointwise magnitude comparison of continuous and discrete measurements: (A) scalar mean curvature, (B) scalar Gaussian cur-

vature, (C) (scalar) bi-Laplacian term VH based on the cotan formula, (D) vector mean curvature, (E) vector Gaussian curvature, and (F) (vector)
bi-Laplacian term based on Schlafli vector. Note that the result of the cotangent Laplacian approach in (C) produces a scalar result while our
approach using the Schlafli vector in (F) is a vector result, thus their direct comparison is not meaningful.
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FIGURE E.2 Pointwise directional comparison
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edge in a skinny triangle face, and 3) split the edge with high
(geodesic) curvature. For additional details, please refer to the soft-
ware documentation.

For practical use, although mesh mutation introduces additional
complexity in data write-out and computational costs associated
with varying (usually growing) mesh size, it nevertheless provides a
robust algorithm to ensure the good mesh quality needed for
valid discrete-smooth comparisons (section “Practical consider-
ations for applying Mem3DG to biological problems”) in static
frames. For dynamical simulation, mesh mutations introduce an arbi-
trary interpolation of state variables, such as the position, velocity,
and protein density. Rigorous study on how to interpolate these quan-
tities to ensure the conservation of energy, momentum, and mass re-
mains to be done. Similarly, the interpolation used in this study
introduces discontinuities of curvature and can create jumps in
forces; this is particularly severe for terms with higher-order deriva-
tives such as the biharmonic term in bending force (Eq. 22).

E.2. Mesh regularization
Mesh regularization can be used when mesh mutations are not
desired. The regularization force consists of three weakly enforced

constraining forces: the edge (length), f*, face (area),fj, and confor-
mality (angle), f*, regularization forces,

= -k, Z Val;, (E.la)
ejjeN(vi)

7= -k Z ’f" _ "k)V,IAUk, (E.1b)
fikeN(vi) 1

fi = -k Z _ ,Al;,», (E.1c)
e,/eN i)

which are in the order of strongest to weakest. The length-cross-ratio,
Aij = lyli/lly is a metric of discrete conformality on triangulated
mesh, where the indices is illustrated in Fig. 1 A and B (148). Regula-
rization forces require the input of a reference value for geometric
measurements, /, A, and 4, which can be derived from a well-condi-
tioned reference mesh (usually the initial input mesh for the simula-
tion). The intensity of each regularization force is controlled with
parameters K., Ky, and K..

For practical use, regularization constraints should be minimally
imposed because of their impact on system dynamics. In the worst
case, regularization constraints can prevent the optimizer from reach-
ing an energy minima. Thus a good practice is to start a simulation
with no: conformality, face area, and finally edge length regulariza-
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tion, and subsequently raise the intensity/type of constraints based
on the mesh quality desired. We do not recommend imposing con-

straints stronger than the face areal constraints,ff. In addition to be-
ing numerical regularizers for the triangulated mesh, they can serve
as model for certain additional physics. For example, the edge length
regularization has been adopted to model the additional local rigidity
from actin-spectrin cortex in red blood cells (95). The areal regulari-
zation can be used to model local incompressibility of the membrane.
The conformality regularization can be used to isolate shearing
resistance.

SUPPORTING MATERIAL

Supplemental information can be found online at https://doi.org/10.
1016/j.bpr.2022.100062.
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