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Fig. 1. Simulation of the Navier–Stokes fluid on the non-orientable Boy surface using our vorticity method.

We present a vorticity method for simulating incompressible viscous flows on

curved surfaces governed by the Navier–Stokes equations. Unlike previous

approaches, our formulation incorporates the often-overlooked Gaussian-

curvature-dependent term in the viscous force, which influences both the

vorticity equation and the evolution of harmonic components. We show that

these curvature-related terms are crucial for reproducing physically correct

fluid behavior. We introduce an implicit–explicit (IMEX) scheme for solving

the resulting system on triangle meshes and demonstrate its effectiveness

on surfaces with arbitrary topology, including non-orientable surfaces, and

under a variety of boundary conditions. Our theoretical contributions include

several explicit formulas: a vorticity jump condition across curvature sheets,

a geometric correspondence between friction coefficients and boundary

curvature adjustments, and the influence of boundary curvature on harmonic

modes. These results not only simplify the algorithmic design but also

offer geometric insight into curvature-driven fluid phenomena, such as the

emergence of the Kutta condition under free-slip boundaries.
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1 INTRODUCTION
Simulating fluid dynamics on curved surfaces has continued to

attract attention in computer graphics [Yaeger et al. 1986; Stam

2003; Shi and Yu 2004; Elcott et al. 2007; Azencot et al. 2014; Yang

et al. 2019; Huang et al. 2020; Ishida et al. 2020; Cui et al. 2021;

Yin et al. 2023; Tao et al. 2024]. Among various formulations of

the governing equations, the vorticity formulation is particularly

attractive [Yaeger et al. 1986; Elcott et al. 2007; Azencot et al. 2014],

since vorticity is a scalar quantity that can be advected directly on

the surface. In contrast, velocity-based formulations must account

for covariant derivatives or parallel transport [Shi and Yu 2004].

However, simulating vorticity on a surface requires additional care.

It is only recently that the full vorticity equation for inviscid fluids

was explicitly formulated in a way that incorporates nontrivial

surface topology [Yin et al. 2023].

In this paper, we derive the vorticity equation for the Navier–

Stokes equation on general surfaces𝑀 . Even for simply-connected

domains, few existing methods in the graphics literature have cor-

rectly incorporated the viscous terms. A commonly overlooked

detail is that the Gaussian curvature 𝐾 of the surface contributes an

additional term to the viscous force in the Navier–Stokes equation.

In the vorticity formulation, this leads to the expression:

𝜕𝑤
𝜕𝑡 + u · ∇𝑤 = 𝜈Δ𝑤︸                    ︷︷                    ︸

previous model

+ 2𝜈 curl(𝐾u)︸        ︷︷        ︸
curvature term

(1)

where𝑤 is the scalar vorticity, u the velocity field, Δ the Laplace–

Beltrami operator, and 𝜈 the kinematic viscosity. Furthermore, on

non-simply-connected domains, curvature and viscosity also affect

the evolution of the harmonic components of the velocity field. If h is
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a harmonic vector field and u is the velocity field, the coefficient

𝑐 = ⎷h, u⌄ evolves according to
𝑑𝑐
𝑑𝑡

=
∬
𝑀
[(h × u)𝑤︸                   ︷︷                   ︸

inviscid part

[Yin et al. 2023]

+ 2𝜈 (h · u)𝐾] 𝑑𝐴 +
∮
𝜕𝑀

𝜈ℎ𝜕𝑤 𝑑𝑠,︸                                   ︷︷                                   ︸
new viscous terms

(2)

where ℎ𝜕 denotes the tangential component of h along the boundary.

We show that these geometric terms are essential for capturing

physically accurate behavior of viscous flows on curved surfaces,

such as the conservation of frictionless rigid body motions.

Our proposed formulation and the accompanying numerical solver

apply to general surfaces, including non-orientable ones (Figure 1).
The framework supports a variety of boundary conditions, including

the commonly used no-slip, Navier friction, and free-slip boundary

conditions.

We highlight several additional findings:

• We analyze the effect of curvature term in (1) and show that a

curvature sheet can maintain a jump discontinuity in vorticity,

even in the presence of the diffusion term 𝜈Δ𝑤 . We derive an

explicit formula for this jump condition (Theorem 2.3).

• We discover a geometric equivalence: setting the friction

coefficient is effectively equivalent to modifying the geodesic
curvature of the boundary. Based on this principle, imposing

boundary friction corresponds to adjusting the boundary’s

intrinsic angles (Sections 3.2 and 5.3.1).

• We introduce the concept of combining Gaussian curvature

and the boundary geodesic curvature into a unified Gauss–
Bonnet curvature density. This reveals that the boundary cur-

vature affects vorticity and harmonic components in the same

way as Gaussian curvature. Notably, the curvature terms in

(1) and (2) remain important even on flat domains with curved

boundaries (Section 3.1). This insight also enables an elegant

and stable discretization for incorporating vortex phenomena

at the boundary.

• This curvature effect directly gives rise to the Kutta condition—a
classical result in aerodynamics stating that flow must detach

cleanly at the sharp trailing edge of an airfoil. Traditionally,

this behavior is attributed to frictional boundary layers. How-

ever, we demonsrate that our formulation reproduces the

Kutta condition naturally under frictionless free-slip boundaries
without explicitly modeling boundary layers (Remark 3.1,

Figure 5).

1.1 Previous Work
There has been a long history of developing fluid simulation methods

on curved surfaces in computer graphics.

1.1.1 Fluid Simulation on the Sphere. A number of works have

focused specifically on fluid simulation on the sphere. Yaeger et

al. [1986] introduced a vorticity formulation for this setting. However,

their formulation omitted the curvature-related term in (1), instead

modeling the voticity dynamics with the convection-diffusion equa-

tion
𝜕𝑤
𝜕𝑡 +u · ∇𝑤 = 𝜈Δ𝑤 . Hill and Henderson [2016] derived the fluid

equations more carefully in spherical coordinates using a velocity-

based formulation and noted that several prior works neglected

geometric terms, though their discussion is primarily limited to the

inviscid case. Huang et al. [2020] presented a chemomechanical

simulation on the sphere using a velocity-based formulation. Their

method implicitly includes a proper viscous force by taking the

divergence of the total stress, but the formulation is written in

spherical coordinates and does not generalize directly to arbitrary

surfaces.

1.1.2 Fluid Simulation on General Surfaces. Stam [2003] extended

fluid simulation to general surfaces using a velocity-based formu-

lation in local coordinates. In this approach, viscosity is modeled

by applying the Laplace–Beltrami operator directly to each coordi-

nate component of the velocity. Carvalho et al. [2012] noted this

treatment is a simplication, pointing out that on curved surfaces,

the divergence of the strain rate cannot generally be reduced to a

componentwise Laplacian.

Hegeman et al. [2009] and Padilla [2018] proposed simulating fluid

flow by first conformally mapping the surface to a round sphere and

solving an effective system on the sphere. However, these methods

apply only to topological spheres and do not include viscosity.

More general approaches rely on coordinate-free calculus applied

directly to discrete surfaces. Shi and Yu [2004] described the inviscid

Euler equation on surfaces using parallel transport for velocity

vectors. Elcott et al. [2007] and Azencot et al. [2014] formulated the

vorticity–streamfunction method for simplicial meshes, but their

vorticity equation also takes the form
𝜕𝑤
𝜕𝑡 +u · ∇𝑤 = 𝜈Δ𝑤 , following

[Yaeger et al. 1986] and omitting the curvature term. Cui et al. [2021]

applied a spectral method for the velocity-based formulation on

surfaces, while Tao et al. [2024] used a particle-in-mesh hybrid

method for the vorticity equation on surfaces. Both works similarly

exclude the curvature term in their modeling of viscosity.

Curved-surface fluid simulations have also been studied in the

Computational Fluid Dynamics (CFD) community. Nitschke et

al. [Nitschke et al. 2017] used Discrete Exterior Calculus (DEC)

(also used in [Elcott et al. 2007]) with a velocity-based formulation

that includes a correct viscous term. Gross et al. [2020] developed

an exterior calculus framework for meshless discretization of a

streamfunction-based method on surfaces. Their focus is limited to

topological spheres, and they note that modeling the dynamics of

harmonic components on non-simply-connected domains remains

an open problem. Nitschke et al. [2021] similarly observed that

vorticity–streamfunction methods (including [Elcott et al. 2007] and

[Azencot et al. 2014]) are not well-suited for non-simply-connected

domains due to the absence of a model for harmonic field dynamics.

Vanneste [2021] simulated the vorticity–streamfunction system

on a non-orientable Möbius strip. In that setting, the harmonic

component is updated by tracking circulation along the boundary.

However, the method does not generalize to harmonic components

arising from genus. A small dissipation term of the form
𝜕𝑤
𝜕𝑡 +u·∇𝑤 =

𝜈Δ𝑤 is added to the vorticity equation, with the author noting that it

does not represent the true viscous force since it omits the curvature-

related term.

Yin et al. [2023] derived and incorporated the correct dynamics

for harmonic components in the inviscid vorticity–streamfunction

framework of [Azencot et al. 2014], but their work focuses primarily

on the inviscid Euler fluids.
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To the best of our knowledge, our algorithm is the first to incor-

porate both the correct viscous terms and the general harmonic

field dynamics on surfaces of arbitrary topology—including non-

orientable surfaces.

1.1.3 Theoretical Foundations. Formulations of the Navier–Stokes

equations on manifolds date back to Ebin and Marsden [1970],

though the viscous term was not expressed using the proper Lapla-

cian. [Taylor et al. 1996, page 600, Chapter 17.5] presents the correct

formulation of the viscous force, invoking the Weitzenböck formula
to relate various Laplacians. The proper viscous modeling on Rie-

mannian manifolds is further emphasized in more recent work by

[Chan et al. 2017] and [Samavaki and Tuomela 2020].

1.2 Overview
We present a detailed derivation of the Navier–Stokes equation on

surfaces and its vorticity formulation in Section 2. The derivation of

the boundary conditions and the extension to non-orientable surfaces

are given in Section 3 and Section 4 respectively. Our numerical

algorithm is described in Section 5, followed by simulation results

in Section 6.

2 EQUATIONS OF MOTION
The goal of this section is to derive the vorticity formulation of

the Navier–Stokes equation on surfaces. In Sections 2.1 and 2.2, we

clarified the appropriate form of the Navier–Stokes equation for

surfaces. We then derive the corresponding vorticity equation, along

with the accompanying harmonic field equation, in Section 2.3.

Let the fluid domain𝑀 be a two-dimensional Riemannian mani-

fold. Here we assume that𝑀 is oriented while leaving the discussion

of non-orientable domains to Section 4.

Let 𝔛 := Γ(𝑇𝑀) denote the space of tangent vector fields. Define
the subspace 𝔛

div
⊂ 𝔛 as the collection of divergence-free vector

fields with no-penetration boundary condition:

𝔛
div

:= {v ∈ 𝔛 | div v = 0 in𝑀 , ⟨v, n⟩ = 0 on 𝜕𝑀}. (3)

The space 𝔛
div

is the feasible space for the velocity field of an

incompressible flow on𝑀 . Here, n is the unit vector at 𝜕𝑀 that is

tangent to𝑀 and inward normal to 𝜕𝑀 .

At each time 𝑡 , the fluid velocity is a vector field u𝑡 ∈ 𝔛div
. We

will suppress the subscript 𝑡 for these time dependent variables.

2.1 Incompressible Navier–Stokes Equation
The incompressible Navier–Stokes equation is given by

𝜕

𝜕𝑡
u + ∇uu = − grad𝑝 + div𝝉 (4)

where 𝑝 is a scalar function representing the pressure or the Lagrange

multiplier that keeps u in the subspace 𝔛
div

, and 𝝉 ∈ Γ(⊙2𝑇𝑀) is a
symmetric bivector (two-vector) tensor representing viscous stress.

1

Here, ∇ is the covariant derivative (a.k.a. the Levi-Civita connection)

for the tangent bundle.

1
The notation ⊙ for the tensor bundle ⊙2𝑇𝑀 = 𝑇𝑀 ⊙ 𝑇𝑀 is the symmetric tensor

product. In particular, ⊙2𝑇𝑀 ⊂ ⊗2𝑇𝑀 is the bundle for symmetric tensors of bivector

type.

The divergence (div𝝉 ) of a symmetric bivector 𝝉 also depends on

the Levi-Civita connection. It represents the net force arising from

the stress 𝝉 . In coordinate index notation, (div𝝉 )𝑖 = ∇𝑗𝜏𝑖 𝑗 .
To close the system (4), one must model how the viscous stress

tensor 𝝉 depends on the variable u. For Newtonian fluids, the viscous

stress tensor 𝝉 is a linear function of the velocity gradient ∇u in a

particular form. Within the tensor ∇u there is a component that

quantifies the rate of shearing or non-isometric deformations the

flow experiences. This quantity is called the strain rate. The viscous
stress tensor is modeled to be proportional to this quantity. This

model will be stated in Section 2.1.2.

2.1.1 Strain Rate. The symmetric part of the velocity gradient corre-
sponds to the rate of non-isometric deformation. This symmetrized

gradient has a natural geometric definition, given as follows:

Definition 2.1 (Killing operator). Let 𝑔 ∈ Γ(⊙2𝑇 ∗𝑀) denote the
metric tensor on𝑀 . The Killing operator is the differential operator
K : Γ(𝑇𝑀) → Γ(⊙2𝑇 ∗𝑀) acting on vector fields, defined as half the
Lie derivative of the metric tensor along the vector field:

Ku :=
1

2

Lu 𝑔. (5)

We now expand the definition of the Lie derivative. For a ve-

locity field u, the tensor Lu 𝑔 represents the rate of change of the
pullback metric under the flow generated by u. Explicitly, Lu 𝑔 =
𝜕
𝜕𝑡 |𝑡=0 (𝜑𝑡 ∗𝑔), where 𝜑𝑡 is the flow map generated by u. In other

words, Ku directly measures the rate of non-isometric deformation

induced by the flow of u.
The following proposition shows that the strain rate Ku indeed

recovers the symmetrized velocity gradient.

Proposition 2.1. The symmetric bilinear form Ku ∈ Γ(⊙2𝑇 ∗𝑀) for
a vector field u ∈ Γ(𝑇𝑀) can be explicitly expressed as follows. At
each point 𝑝 ∈ 𝑀 , for all a, b ∈ 𝑇𝑝𝑀 :

(Ku)⟦a, b⟧ = 1

2

(⟨∇au, b⟩ + ⟨∇bu, a⟩) . (6)

Proof. Appendix A.1. □

Remark 2.1. In an orthonormal basis, equation (6) shows that Ku
corresponds to the 2-by-2 matrix Ku = 1

2
(∇u + (∇u)⊺). That is, Ku

is the symmetric part of the matrix ∇u, familiar to readers with a
continuummechanics background. However, the expression (∇u+∇u⊺)
informally combines tensors of different types: ∇u sends vectors to
vectors, while ∇u⊺ sends covectors to covectors. Writing (∇u + ∇u⊺)
precisely requires an additional layer of metric conversions. For clarity,
we will therefore continue working with the invariant object Ku.
Definition 2.2 (Killing vector field). A vector field v is called a
Killing vector field if Kv = 0.

Killing vector fields generate isometric flows—rigid motions that

do not involve shearing. Domains with continuous symmetries,

such as surfaces of revolution, admit Killing vector fields. If the

fluid velocity is a Killing field, then the fluid experiences no internal

viscous stress.
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2.1.2 Constitutive Model. The viscous stress in (4) is proportional

to the strain rate

𝝉 = 2𝜈 (Ku)♯ . (7)

where 𝜈 ≥ 0 is the kinematic viscosity coefficient. Here, the ♯

operator in (Ku)♯ denotes the isomorphism ⊙2𝑇 ∗𝑀 → ⊙2𝑇𝑀 with

respect to the Frobenius norm for order-2 tensors. In index notation,

𝜏𝑖 𝑗 = 2𝜈𝑔𝑖𝑘𝑔 𝑗ℓ (Ku)𝑘ℓ .
The stress–strain relationship (7) can also be derived from varia-

tional principles via the Rayleigh dissipation functional:

R : 𝔛
div
→ R, R[u] :=

∬
𝑀

𝜈 |Ku|2 𝑑𝐴, (8)

where | · |2 is the Frobenius norm. The dissipation functional (8)

quantifies the rate of energy dissipation, modeled under the physical

assumption that the dissipation depends quadratically and isotropi-

cally on the strain rate. The viscous force in the momentum equation

(4) is then obtained via Rayleigh’s variational principle: the viscous

force is the negative gradient of the Rayleigh dissipation functional,

added directly to the inviscid equation of motion (the Euler equation).

We recall the notion of a functional gradient:

Definition 2.3. The gradient of a functional F : 𝔛
div
→ R at u ∈

𝔛
div

, with respect to the 𝐿2 inner product structure ⎷·, ·⌄ :=
∬
𝑀
⟨·, ·⟩ 𝑑𝐴

on 𝔛
div

, is the vector field (gradF )|u ∈ 𝔛div
satisfying

𝑑

𝑑𝜖

����
𝜖=0

F [u + 𝜖ů] = ⎷gradF |u, ů⌄ (9)

for any variation ů ∈ 𝔛
div

that vanishes on 𝜕𝑀 .

Proposition 2.2. The functional gradient (gradR) of R defined in
(8) is given by

(gradR)|u = −2𝜈 div(Ku)♯ . (10)

Proof. Appendix A.4. □

2.1.3 Summary. The Navier Stokes equation (4) with the stress–

strain relation (7) becomes:

𝜕

𝜕𝑡
u + ∇uu = − grad𝑝 + 2𝜈 div(Ku)♯ . (11)

This equation can be viewed as the Euler equation
𝜕
𝜕𝑡 u + ∇uu =

− grad𝑝 , augmented by the additional gradient descent term−(gradR)|u
of the dissipation functional R.

2.2 Hodge, Bochner, and Viscous Laplacians
On a flat Euclidean domain, the divergence of the symmetrized

gradient equals the vector Laplacian when applied to divergence-

free fields, ∇· (∇u+∇u⊺) = Δu+∇(∇·u), which leads to the familiar

form of the Navier–Stokes equation
𝜕
𝜕𝑡 u + ∇uu = − grad𝑝 + 𝜈Δu.

However, this vector identity does not hold when the domain has

curvature.

There are three relevant surface Laplacians for vector fields in this

context, each defined via the functional gradient of a Dirichlet-type

energy.

2.2.1 Dirichlet Energies.

Definition 2.4 (Standard Dirichlet energy). The standardDirichlet
energy for a vector field v ∈ Γ(𝑇𝑀) is:

ED [v] :=
1

2

∬
𝑀

|∇v|2 𝑑𝐴. (12)

Definition 2.5 (Hodge-Dirichlet energy). The Hodge-Dirichlet
energy for a vector field v ∈ Γ(𝑇𝑀) is:

EH [v] :=
1

2

∬
𝑀

( |𝑑v♭ |2 + |𝛿v♭ |2) 𝑑𝐴, (13)

where 𝑑 and 𝛿 denote the exterior derivative and the codifferential
respectively.

Note that if v is restricted to 𝔛
div

(divergence-free fields, where

v♭ is coclosed), the Hodge-Dirichlet energy simplifies to

EH [v] =
1

2

∬
𝑀

|𝑑v♭ |2 𝑑𝐴, v ∈ 𝔛
div
. (14)

Here, 𝑑v♭ is the vorticity 2-form, corresponding to the skew-
symmetric part of 2∇v.
Definition 2.6 (Viscous-Dirichlet energy). The viscous-Dirichlet
energy—also called the Killing energy [Ben-Chen et al. 2010]—for a
vector field v ∈ Γ(𝑇𝑀) is:

EV [v] :=

∬
𝑀

|Kv|2 𝑑𝐴. (15)

The standard Dirichlet energy measures the smoothness of the

vector field, a notion commonly used in vector field design in geom-

etry processing. The Hodge-Dirichlet energy, when restricted to

divergence-free fields, measures the 𝐿2
-strength of the vorticity. The

viscous-Dirichlet energy measures the rate of energy dissipation

(R = 𝜈EV; see (8)) and also quantifies the deviation of a vector field

from being a Killing field.

Remark 2.2. When𝑀 is a flat Euclidean domain (ignoring boundary
effects), the three Dirichlet energies are equal. In fluid mechanics,
they are all referred to as the enstrophy of the flow, with physical
interpretations relating to both the vorticity magnitude and the level
of dissipation. However, to our knowledge, there is no universal agreed-
upon definition of enstrophy for fluid on a Riemannian manifold,
where these two interpretations diverge.

2.2.2 Vector Laplacians. The following are the three vector Lapla-

cians associated with the three Dirichlet energies.

Definition 2.7. The Bochner Laplacian (or connection Lapla-
cian) for a vector field v ∈ Γ(𝑇𝑀) is defined by

ΔBv := −(grad ED) |v . (16)

The Bochner Laplacian satisfies ΔBv = div(∇v) where div de-

notes the connection divergence (the negative 𝐿2
-adjoint of ∇). An

alternative expression is ΔBv = ★−1𝑑∇ ★∇v where v is regarded as

a vector-valued 0-form, and 𝑑∇ is the covariant exterior derivative

for vector-valued 𝑘-forms.

Definition 2.8. The Hodge Laplacian for a vector field v ∈ Γ(𝑇𝑀)
is defined by

ΔHv := −(grad EH) |v . (17)
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The Hodge Laplacian takes the familiar form: ΔHv = −((𝑑𝛿 +
𝛿𝑑)v♭)♯ , standard in exterior calculus.

Definition 2.9. The viscous Laplacian for a vector field v ∈ Γ(𝑇𝑀)
is defined by

ΔVv := −(grad EV) |v . (18)

The viscous Laplacian is given by ΔVv = 2 div(Kv)♯ , where div ◦♯
is the negative adjoint of K .
All three Laplacians are self-adjoint (with respect to 𝐿2

) and are

negative semi-definite elliptic operators. Their differences become

apparent when examining their kernels (zero eigenspaces). For

simplicity, we restrict v ∈ 𝔛
div

.

• ΔBv = 0 if and only if v ∈ 𝔛
div

is parallel. In particular, ΔB

has a nontrivial kernel only when the domain is flat.

• ΔHv = 0 if and only if v ∈ 𝔛
div

is harmonic. Thus, ΔH has a

kernel if and only if the domain is not simply connected.

• ΔVv = 0 if and only if v ∈ 𝔛
div

is a Killing field. Consequently,
ΔV has a kernel if and only if the metric domain admits

continuous symmetries.

The kernel of ΔB are parallel translational flows, which exist only in

Euclidean whose boundaries (if any) are straight and compatible

with translation, such as in a pipe domain. In contrast, the existence

of a kernel for ΔH depends solely on the topology of the domain.

Meanwhile, the existence of a kernel for ΔV reflects the presence

of domain symmetries. For example, Killing fields exist on simply

connected curved domains such as the round sphere.

0

𝑤

(a) Killing field

(b) Harmonic field

(c) Parallel field

Fig. 2. Kernels of the Laplacians ΔV, ΔH, and ΔB on tori. (a) A vector field in
ker(ΔV ) is a Killing field, which generally has nonzero vorticity. (b) A vector
field in ker(ΔH ) is harmonic and therefore has zero vorticity. (c) A vector
field in ker(ΔB ) is parallel, which is possible on a flat torus; on this domain
ΔB, ΔH, ΔV share the same kernel.

The following theorem states the precise relationship between

the three Laplacians.

Theorem 2.1 (Weitzenböck identity). When applied to divergence-
free vector fields v ∈ 𝔛

div
on a surface, the Bochner, Hodge, and viscous

Laplacians are related by:

ΔBv = ΔHv + 𝐾v = ΔVv − 𝐾v, v ∈ 𝔛
div
, (19)

where 𝐾 is the Gaussian curvature of the surface.

Proof. Appendix A.6. □

2.2.3 Summary. The Navier–Stokes equation can be written in

terms of the different Laplacians as any of the following equivalent

forms:

𝜕
𝜕𝑡 u + ∇uu = − grad𝑝 + 𝜈ΔVu (20)

𝜕
𝜕𝑡 u + ∇uu = − grad𝑝 + 𝜈ΔBu + 𝜈𝐾u (21)

𝜕
𝜕𝑡 u + ∇uu = − grad𝑝 + 𝜈ΔHu + 2𝜈𝐾u. (22)

A direct consequence of the Navier–Stokes equation is that if a

Killing field exists, the component of the velocity field along the

Killing field is conserved.

Theorem 2.2. Suppose v ∈ 𝔛
div

is a Killing field, and let u be a
solution to the Navier–Stokes equation. Then ⎷u, v⌄ remains constant
in time.

Proof. Appendix A.2. □

2.3 Vorticity Formulation
We now derive the vorticity formulation of the Navier–Stokes equa-

tion.

2.3.1 Vorticity Equation. Applying the ♭ operator to (22), we obtain

the Navier–Stokes equation in covector form:

𝜕

𝜕𝑡
u♭ +Lu u♭ = −𝑑

(
𝑝 − 1

2

|u|2
)
− 𝜈𝛿𝑑u♭ + 2𝜈𝐾u♭ . (23)

Taking the exterior derivative of (23), and letting

𝜔 := 𝑑u♭ ∈ Ω2 (𝑀) (24)

denote the vorticity 2-form, we obtain:

𝜕

𝜕𝑡
𝜔 +Lu 𝜔 = −𝜈𝑑𝛿𝜔 + 2𝜈𝑑 (𝐾u♭) . (25)

Let the vorticity scalar function be defined by

𝑤 = ★−1𝜔 ∈ Ω0 (𝑀). (26)

Then (25) becomes

𝜕

𝜕𝑡
𝑤 +Lu𝑤 = 𝜈Δ𝑤 + 2𝜈 ★−1 𝑑 (𝐾u♭), (27)

where Δ = ★−1𝑑★𝑑 is the standard (negative semi-definite) Laplace–

Beltrami operator for scalar functions.

In vector calculus notation, this reads:

𝜕

𝜕𝑡
𝑤 + u · ∇𝑤 = 𝜈Δ𝑤 + 2𝜈 curl(𝐾u) . (28)

Here, in two dimensions, we use the scalar curl operator curl :=

− div ◦𝐽 , where 𝐽 denotes the 90
◦
rotation operator.

Remark 2.3 (Effect of curvature on vorticity). Equations (25) and
(28) show that the vorticity evolves via a convection-diffusion process
with an additional curvature-driven term 2𝜈𝑑 (𝐾u♭). Applying the
Leibniz rule 𝑑 (𝐾u♭) = 𝑑𝐾 ∧ u♭ + 𝐾𝑑u♭ we can expand the curvature
term 2𝜈 curl(𝐾u) as:

2𝜈 curl(𝐾u) = 2𝜈 ⟨−𝐽u, grad𝐾⟩ + 2𝜈𝐾𝑤. (29)
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0

𝑤

Fig. 3. A singular sheet in the Gaussian curvature gives rise to a jump
discontinuity in the vorticity, shown by the color (cf. Theorem 2.3). Left:
Vorticity distribution in a simulation on a surface with a curved ridge. Right:
The rigid body rotation field on a cylinder exhibits a vorticity jump that
agrees with Theorem 2.3.

These terms can induce a vorticity confinement effect, opposing the
diffusion 𝜈Δ𝑤 , and can lead to soliton-like behavior in the vorticity
field.
To best illustrate this effect, consider the case where Gaussian cur-

vature is concentrated along a curve segment Γ ⊂ 𝑀 . Specifically,
take 𝐾 = 𝐾reg + 𝑓 𝛿Γ , where 𝐾reg is a smooth function (the regular
part of the curvature), and 𝛿Γ is the Dirac 𝛿-distribution supported
on Γ (a singular curvature sheet). The factor 𝑓 is a smooth function
defined along Γ. More precisely, for any test function 𝜑 : 𝑀 → R,∫
𝑀
𝐾𝜑 𝑑𝐴 =

∫
Ω 𝐾reg𝜑 𝑑𝐴 +

∫
Γ 𝑓 𝜑 𝑑𝑠 . In this setting, the vorticity de-

velops a jump discontinuity across Γ characterized by the following
jump condition (see also Figure 3):

Theorem 2.3 (Curvature sheet and vorticity jump). Under the
vorticity equation (28) with 𝐾 = 𝐾reg + 𝑓 𝛿Γ and any 𝜈 > 0, the
vorticity𝑤 satisfies the jump condition

[𝑤]Γ = 2𝑓 ⟨u, tΓ⟩ (30)

where tΓ is the tangent vector of Γ and [𝑤]Γ denotes the jump of𝑤
across Γ in the direction 𝐽 tΓ normal to Γ. Specifically, for each 𝑥 ∈ Γ,
[𝑤]Γ (𝑥) = lim𝜖↘0

+ 𝑤 (𝛾 (𝜖)) −𝑤 (𝛾 (−𝜖)), where 𝛾 : (−𝑎, 𝑎) → 𝑀 is
any smooth curve with 𝛾 (0) = 𝑥 and 𝛾 ′ (0) = 𝐽 t.

Proof. Appendix B.1 □

Remark 2.4. The jump condition (30) is independent of the viscosity
𝜈 . This naturally leads to the question of whether, in the limit 𝜈 → 0,
the jump vanishes abruptly or continuously? To analyze this limiting
behavior, we regularize the curvature singularity by smoothing the
curvature sheet with thickness 𝜖 . We now consider the limiting process
involving both parameters 𝜖 and 𝜈 (see Figure 4 for a numerical
example). For nonzero 𝜖 and 𝜈 , there exists a relaxation time 𝜏 for
(30) to emerge after the initial condition. Dimension analysis shows
that 𝜏 = 𝑂 (𝜖2/𝜈).2 If 𝜖2 → 0 faster than 𝜈 → 0, the jump condition
emerges, and the resulting jump is independent of the value of 𝜈 . In
contrast, if 𝜖 > 0 is fixed while 𝜈 → 0, then the jump vanishes smoothly.

2
By Buckingham’s Π theorem, three variables 𝜏, 𝜖, 𝜈 , which involve only the dimensions

of length and time, must be related through a dimensionless constant. In this case, the

relation is 𝜈𝜏/𝜖2 = 𝐶 .
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Fig. 4. Validation of (30) with various viscosity 𝜈 on a cylinder of radius
𝑅 = 1/2 (Figure 3, right) triangulated with averaged edge length 𝜖 . The
Gaussian curvature in its regular and singular parts is given by 𝐾 = 0 + 1

𝑅
𝛿Γ

(i.e. 𝑓 = 2 in (30)) where Γ is the rim of the cylinder, and the Dirac 𝛿 is
smoothed with thickness𝑂 (𝜖 ) . As 𝜖 → 0, the relative error of (30) rapidly
reduces over time for all 𝜈 .

The condition (30) is to be interpreted under the assumption 𝜖 = 0, in
which case the jump is independent of 𝜈 . In practice, discretization
introduces a finite 𝜖 ≈ edge length, and thus both parameters play a
role in numerical results (Figure 4).

2.3.2 Velocity Reconstruction. To complete (28), we describe how

u is reconstructed from the variable 𝑤 . This is achieved using a

streamfunction and, when the domain is non-simply-connected,

harmonic fields. This standard procedure is also detailed in [Yin

et al. 2023, § 2.3–2.6 and § B] and [Azencot et al. 2014, Eq. (1)].

Definition 2.10. Let ℌ := {h ∈ 𝔛
div
| 𝑑h♭ = 0} ⊂ 𝔛

div
be the space

of harmonic vector fields. Let𝑚 := dim(ℌ).
These harmonic vector fields are divergence-free and curl-free

with the no-penetration boundary condition. The corresponding

1-formsH1

C
:= ℌ♭

are harmonic 1-forms satisfying the co-Dirichlet

(Neumann) boundary condition: 𝑑h♭ = 0, 𝑑 ★ h♭ = 0, 𝑗∗ ★ h♭ = 0,

where 𝑗 : 𝜕𝑀 ↩→ 𝑀 is the inclusion map of the boundary. The

dimension𝑚 of ℌ is finite and equals the first Betti number of𝑀 ,

i.e. the dimension of its first homology group.

Let h1, . . . , h𝑚 be a time-independent, 𝐿2
-orthonormal basis for

ℌ. By the Hodge–Morrey–Friedrichs decomposition, any u ∈ 𝔛
div

can be expressed as

u = −𝐽 grad𝜓 +
𝑚∑︁
𝑖=1

𝑐𝑖h𝑖 , (or u♭ = ★−1𝑑𝜓 +∑𝑚𝑖=1
𝑐𝑖h♭𝑖 ), (31)

where the streamfunction𝜓 ∈ Ω0 (𝑀) is a scalar function satisfying

a zero-Dirichlet boundary condition
3 𝜓 |𝜕𝑀 = 0, and 𝑐𝑖 ∈ R are

time-dependent coefficients whose evolution will be discussed in

Section 2.3.3.

The streamfunction𝜓 is uniquely determined (up to an additive

constant if 𝜕𝑀 = ∅) by the vorticity via the Poisson problem:{
−Δ𝜓 = 𝑤 in𝑀

𝜓 = 0 on 𝜕𝑀 .

(32)

3
In the literature of 2D streamfunction representation, the streamfunctions are often

described as having constant Dirichlet boundary conditions, with different constants for

each connected component of the boundary. These cases are handled by the harmonic

part

∑𝑚
𝑖=1
𝑐𝑖h𝑖 .
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2.3.3 Evolution of the Harmonic Part. The coefficients 𝑐𝑖 in (31)

evolve over time [Yin et al. 2023]. The dynamics of 𝑐𝑖 is nontrivial

even in the inviscid case, derived in [Yin et al. 2023, §3]. In sum, the

inviscid evolution of 𝑐𝑖 is given by
𝑑𝑐𝑖
𝑑𝑡

=
∬
𝑀
(h𝑖 × u)𝑤 𝑑𝐴, which is

obtained by taking the 𝐿2
product of the Euler equation in Lamb’s

form 𝜕
𝜕𝑡 u

♭ = −𝑖u𝜔 − 𝑑 (𝑝 + 1

2
|u|2) [Yin et al. 2023, Eq. (23)] with

the harmonic basis h𝑖 . Here, Lamb’s Euler equation is obtained by

expanding Cartan’s formula Lu u♭ = 𝑖u𝑑u♭ + 𝑑𝑖uu♭ = 𝑖u𝜔 + 𝑑 |u|2,
where 𝑖u is the interior product.

Now, we derive the viscous case in a similar fashion.

First, we rewrite (23) in Lamb’s form:

𝜕
𝜕𝑡 u

♭ = −𝑖u𝜔 − 𝑑
(
𝑝 + 1

2
|u|2

)
− 𝜈𝛿𝜔 + 2𝜈𝐾u♭ . (33)

To derive the equation for 𝑐𝑖 = ⎷u, h𝑖⌄ = ⎷u♭, h♭𝑖 ⌄, we take the 𝐿2

product between (33) and h♭
𝑖
:

𝑑𝑐𝑖
𝑑𝑡

=
∬
𝑀
𝜔⟦h𝑖 , u⟧𝑑𝐴 − 𝜈⎷h♭𝑖 , 𝛿𝜔⌄ + 2𝜈

∬
𝑀
⟨h𝑖 , u⟩𝐾 𝑑𝐴. (34)

The middle term ⎷h♭
𝑖
, 𝛿𝜔⌄ can be expanded as

−⎷h♭
𝑖
, 𝛿𝜔⌄ = −∬

𝑀
h♭
𝑖
∧ 𝑑𝑤 =

∬
𝑀
𝑑 (𝑤h♭

𝑖
) =

∮
𝜕𝑀

𝑤h♭
𝑖

(35)

using 𝛿𝜔 = ★−1𝑑 ★𝜔 , ⎷·, ·⌄ = ∬
𝑀
(·) ∧★(·), 𝑑h♭

𝑖
= 0, ★𝜔 = 𝑤 , and

Stokes’ theorem. Thus, we obtain:

𝑑𝑐𝑖

𝑑𝑡
=

∬
𝑀

(
(h𝑖 × u)𝑤 + 2𝜈 ⟨h𝑖 , u⟩𝐾

)
𝑑𝐴 +

∮
𝜕𝑀

𝜈ℎ𝑖𝜕𝑤 𝑑𝑠 (36)

where ℎ𝑖𝜕 is the tangential component of h𝑖 along the boundary:

ℎ𝑖𝜕 : 𝜕𝑀 → R, ℎ𝑖𝜕 := ⟨h𝑖 , t⟩ (37)

with t being the unit tangent vector for the oriented curve 𝜕𝑀 . In

two dimensions, the cross product × of two tangent vectors is a

scalar, defined by h𝑖 × u := ⟨𝐽h𝑖 , u⟩.
Remark 2.5 (Interior and boundary viscous effects on the harmonic

part). If 𝜕𝑀 = ∅, the boundary term
∮
𝜕𝑀

𝜈ℎ𝑖𝜕𝑤 𝑑𝑠 vanishes. In this

case, the only remaining viscous contribution to 𝑑𝑐𝑖
𝑑𝑡

is the curvature
term

∬
𝑀

2𝜈 ⟨h𝑖 , u⟩𝐾 𝑑𝐴. In general, the only interior viscous contribu-

tion to 𝑑𝑐𝑖
𝑑𝑡

is the curvature term, while the diffusion term contributes
solely through the boundary.

2.3.4 Summary. The vorticity formulation for the Navier–Stokes

equation can be summarized as follows. The state variables are the

vorticity scalar field 𝑤 ∈ Ω0 (𝑀) and the coefficients 𝑐1, . . . , 𝑐𝑚 ∈
R, all depending on time. Each state (𝑤, 𝑐1, . . . , 𝑐𝑚) determines a

unique velocity vector field u via (31), which requires solving the

scalar Poisson problem (32) together with a fixed orthonormal basis

(h1, . . . , h𝑚) for harmonic fields.

Theorem 2.4. Under the Navier–Stokes equation (11), the variables
(𝑤, 𝑐1, . . . , 𝑐𝑚) evolve according to{

𝜕𝑤
𝜕𝑡 + u · ∇𝑤 = 𝜈Δ𝑤 + 2𝜈 curl(𝐾u),
𝑑𝑐𝑖
𝑑𝑡

=
∬
𝑀
[(h𝑖 × u)𝑤 + 2𝜈 (h𝑖 · u)𝐾] 𝑑𝐴 +

∮
𝜕𝑀

𝜈ℎ𝑖𝜕𝑤𝜕 𝑑𝑠.

(38)

We emphasize that the evolution system (38) remains incomplete

until additional boundary conditions are specified.

Remark 2.6. The evolution system (38) is not yet complete because
certain variables on the right-hand side remain undetermined. Specif-
ically, the boundary value 𝑤 |𝜕𝑀 of the vorticity is required. Note
that the vorticity equation in (38) governs only the interior of𝑀 and
provides no direct information about𝑤 |𝜕𝑀 . These boundary values are
necessary both for evaluating the diffusion term 𝜈Δ𝑤 in the vorticity
equation and for computing the boundary integral

∮
𝜕𝑀

𝜈ℎ𝑖𝜕𝑤𝜕 𝑑𝑠 .
The remaining components of the system, including (31) and (32),
involve only the interior values of𝑤 .

3 BOUNDARY CONDITIONS
As discussed in Remark 2.6, the boundary vorticity𝑤𝜕 : 𝜕𝑀 → R
is an unknown function appearing on the right-hand side of the

evolution equation (38). An additional set of equations is required to

constrain the freedom of𝑤𝜕 at each time 𝑡 . In this section, we detail

how three common boundary conditions—free-slip, friction, and

no-slip—are incorporated into (38). In particular, we show that the

curvature of the boundary plays a crucial role in these conditions.

3.1 Free-Slip Boundary
The free-slip boundary condition is the mathematical natural bound-
ary condition derived from the Rayleigh variational principle in

Section 2.1.2. It is also known as the Navier slip condition.

Definition 3.1 (Natural boundary condition). Let (gradF )|u ∈ 𝔛div

be the gradient of a functional F : 𝔛
div
→ R at u ∈ 𝔛

div
as defined

in Definition 2.3. The natural boundary condition associated with
F is the condition on u ∈ 𝔛

div
such that (9) continues to hold for any

variation ů ∈ 𝔛
div

without requiring ů to vanish on 𝜕𝑀 .

Proposition 3.1. The natural boundary condition for R, defined in
(8), is:

(Ku)⟦t, n⟧ = 0 on 𝜕𝑀 , (39)

where t is the unit tangent of the oriented curve 𝜕𝑀 , and n = 𝐽 t.

Proof. Appendix A.5. □

Physically, the condition (Ku)⟦t, n⟧ = 0 expresses the absence of

friction. The application (Ku)⟦n, ·⟧ of the tensorKu on n represents

the traction force (up to a factor of 2𝜈) exerted on the boundary

geometry 𝜕𝑀 (whose normal is n). Thus, the condition (Ku)⟦t, n⟧ =
0 states that this traction force has no tangential component, meaning

there is no friction or shear stress from the boundary, allowing the

fluid to slip freely along the wall.

Theorem 3.1. Under the natural boundary condition (39), the bound-
ary vorticity is:

𝑤𝜕 = 2𝜅g𝑢𝜕 on 𝜕𝑀 (40)

where 𝑢𝜕 := ⟨u, t⟩ : 𝜕𝑀 → R is the tangential velocity component, and
𝜅g is the geodesic curvature of 𝜕𝑀 .

Proof. Appendix C.1 □

Example 3.1. The rigid rotating flow in a circular disk serves as an
analytical example of (40). On the disk of radius 𝑅 centered at the
origin, a rigid rotation with angular velocity 𝑎 induces a velocity field
(𝑢𝑥 , 𝑢𝑦) = 𝑎(−𝑦, 𝑥), corresponding to a constant vorticity𝑤 = 2𝑎. The
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boundary velocity is 𝑢𝜕 = 𝑅𝑎 and the boundary curvature is 𝜅g = 1

𝑅
.

One can verify𝑤 = 2𝜅g𝑢𝜕 .

Equation (40) can be directly substituted into

(38). The boundary integral

∮
𝜕𝑀

𝜈ℎ𝑖𝜕𝑤𝜕 𝑑𝑠 be-

comes

∮
𝜕𝑀

2𝜈ℎ𝑖𝜕𝑢𝜕𝜅g 𝑑𝑠 . We can reorganize the

resulting equation geometrically using the follow-

ing notion.

Definition 3.2 (Gauss–Bonnet curvature density).
The Gauss–Bonnet curvature density is a distributional 2-form
Ω ∈ Ω2 (𝑀) defined by:∬

𝑀

𝑓 Ω :=

∬
𝑀

𝑓 𝐾 𝑑𝐴 +
∮
𝜕𝑀

𝑓 𝜅g 𝑑𝑠 (41)

for any smooth function 𝑓 ∈ 𝐶∞ (𝑀).
Formally, Ω can be written as Ω = (𝐾 + 𝜅g𝛿𝜕𝑀 ) 𝑑𝐴 where 𝛿𝜕𝑀 is

the Dirac 𝛿-distribution supported on 𝜕𝑀 . Ω serves as the integrand

in the Gauss–Bonnet theorem, satisfying

∬
𝑀

Ω = 2𝜋 𝜒 (𝑀), where
𝜒 (𝑀) is the Euler characteristic of 𝑀 . Thus, Ω generalizes the

Gaussian curvature 2-form to surfaces with boundaries, ensuring

that integration yields a topological invariant as in the classical

Gauss–Bonnet theorem for closed surfaces.

Corollary 3.1. Under the Navier–Stokes equation (11) and the free-
slip boundary condition (39), the harmonic coefficients (𝑐1, . . . , 𝑐𝑚)
evolve according to:

𝑑𝑐𝑖

𝑑𝑡
=

∬
𝑀

(h𝑖 × u)𝜔 + 2𝜈 (h𝑖 · u)Ω. (42)

Remark 3.1. While the relationship (40) is consistent with the gen-
eral understanding that boundary curvature and tangential velocity
contribute to vorticity generation, a specific formulation equating
boundary vorticity to the product of geodesic curvature and tangential
velocity is not commonly found in standard references. One appearance
of (40) can be found in [Kelliher 2006]. We speculate that the result of
Corollary 3.1 may lead to a mathematically rigorous foundation for the
Kutta condition, which argues that steady flows around an airfoil
are typically accompanied by a circulation such that the tangential
velocity vanishes near the airfoil’s tail, where 𝜅g = ∞. See Figure 5.

In fact, the boundary condition (40) can be elegantly absorbed into

the vorticity equation using the Gauss–Bonnet curvature density Ω.
Note that the Gauss–Bonnet curvature 𝐾Ω

, defined by

Ω = (𝐾 + 𝜅g𝛿𝜕𝑀 ) 𝑑𝐴 =: 𝐾Ω 𝑑𝐴, (43)

exhibits a singular curvature sheet along the boundary, as discussed

in Remark 2.3. Theorem 2.3 shows that if we replace 𝐾 by 𝐾Ω
in

(28), a jump [𝑤]𝜕𝑀 = 2𝜅g𝑢𝜕 arises naturally. To exploit this, we set

the Dirichlet boundary condition𝑤 |𝜕𝑀 = 0. The vorticity just inside

the boundary then matches 2𝜅g𝑢𝜕 , consistent with (40).
4

Corollary 3.2. The vorticity equation (28) with the free-slip condition
(40) is equivalent to the vorticity equation with using Gauss–Bonnet

4
Here, the jump [𝑤 ]𝜕𝑀 of vorticity is evaluated with the vorticity on the outer side of

𝜕𝑀 set to zero, as prescribed by the Dirichlet condition. This is because the singular

curvature sheet 𝜅g𝛿𝜕𝑀 is supported slightly inside the domain, which is consistent

with the discrete setting described in (62) in Section 5.1.3, where the curvature sheet is

supported along the triangle strip adjacent to the boundary.

Fig. 5. The effect of boundary curvature on viscous flow around an obstacle
with free-slip boundary condition. The flow around an airfoil with free-
slip boundary exhibits nontrivial evolution in its harmonic component.
In particular, circulation around the airfoil increases to satisfy the Kutta
condition—ensuring that the flow does not wrap about the sharp trailing
edge. The simulation is performed using Algorithm 1, which solves (45), on a
cylindrical surface with an embedded airfoil-shaped region removed.

curvature𝐾Ω = 𝐾 +𝜅g𝛿𝜕𝑀 with the zero Dirichlet boundary condition:{
𝜕𝑤
𝜕𝑡 + u · ∇𝑤 = 𝜈Δ𝑤 + 2𝜈 curl(𝐾Ωu),
𝑤 |𝜕𝑀 = 0

(44)

That is, an equivalent formulation of the Navier–Stokes equation
(11) with the free-slip boundary condition (39) is the evolution of
(𝑤, 𝑐1, . . . , 𝑐𝑚) governed by

𝜕𝑤
𝜕𝑡 + u · ∇𝑤 = 𝜈Δ𝑤 + 2𝜈 curl(𝐾Ωu),
𝑑𝑐𝑖
𝑑𝑡

=
∬
𝑀
(h𝑖 × u)𝜔 + 2𝜈 (h𝑖 · u)Ω,

𝑤 |𝜕𝑀 = 0.

(45)

3.2 Navier Friction Boundary
The natural boundary condition (39) imposes zero shear stress at

the boundary. If instead there is friction from the wall, the boundary

condition becomes:

2𝜈 (Ku)⟦t, n⟧ = 𝛼𝑢𝜕 on 𝜕𝑀 (46)

where 𝛼 > 0 is the friction coefficient.

Theorem 3.2. Under the friction condition (46), the boundary vortic-
ity is:

𝑤𝜕 = (2𝜅g − 𝛼
2𝜈 )𝑢𝜕 on 𝜕𝑀, (47)

where 𝑢𝜕 is the tangential velocity component, and 𝜅g is the geodesic
curvature of 𝜕𝑀 .

Proof. Appendix C.2 □

Equation (47) is consistent with the general understanding that

for large relative friction (𝛼/𝜈 ≫ 0), vorticity generation is ap-

proximately proportional to the negative of the tangential velocity

[Lighthill 1963; Chorin 1978]. Equation (47) precisely specifies that

this proportionality constant is the relative friction coefficient offset

by the geodesic curvature of the boundary [Kelliher 2006].

Similar to the treatment of the free-slip condition using the Gauss–

Bonnet curvature (Definition 3.2), we can incorporate the condition
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Fig. 6. On the Schwarz P surface, an initially stationary fluid (𝑤 = 0, c = 0)
is set into motion by a rotating boundary with prescribed velocity 𝑢𝜕 = 2.
The no-slip condition (52) is enforced using Alg. 2 with time step 𝛥𝑡 = 0.01.
Each boundary circle has radius 0.4, and the viscosity is set to 𝜈 = 0.01.

(47) using a modified Gauss–Bonnet curvature. Specifically, we shift

the geodesic curvature by the factor
𝛼
4𝜈 .

Definition 3.3 (Gauss–Bonnet curvature with friction). TheGauss–
Bonnet curvature density with friction 𝛼

4𝜈 is a distributional
2-form Ω𝛼/(4𝜈 ) defined by∬

𝑀
𝑓 Ω𝛼/(4𝜈 ) :=

∬
𝑀
𝑓 𝐾 𝑑𝐴 +

∮
𝜕𝑀

𝑓 (𝜅g − 𝛼
4𝜈 ) 𝑑𝑠 (48)

for any smooth function 𝑓 ∈ 𝐶∞ (𝑀). The associated curvature function
𝐾Ω,𝛼/𝜈 is defined by

𝐾Ω,𝛼/(4𝜈 )
:= 𝐾 + (𝜅g − 𝛼

4𝜈 )𝛿𝜕𝑀 , Ω𝛼/(4𝜈 ) = 𝐾Ω,𝛼/(4𝜈 ) 𝑑𝐴. (49)

Corollary 3.3. An equivalent formulation of the Navier–Stokes equa-
tion (11) with the Navier friction boundary condition (46) is the evolu-
tion of (𝑤, 𝑐1, . . . , 𝑐𝑚) governed by

𝜕𝑤
𝜕𝑡 + u · ∇𝑤 = 𝜈Δ𝑤 + 2𝜈 curl(𝐾Ω,𝛼/(4𝜈 )u),
𝑑𝑐𝑖
𝑑𝑡

=
∬
𝑀
(h𝑖 × u)𝜔 + 2𝜈 (h𝑖 · u)Ω𝛼/(4𝜈 ) ,

𝑤 |𝜕𝑀 = 0.

(50)

3.3 No-Slip Boundary
The no-slip boundary condition is defined by

𝑢𝜕 = 0 on 𝜕𝑀, (51)

where 𝑢𝜕 denotes the tangential velocity at 𝜕𝑀 . The condition can

be generalized to

𝑢𝜕 = 𝑢𝜕 on 𝜕𝑀, (52)

where 𝑢𝜕 is a prescribed tangential velocity that can be nonzero.

Condition (51) can be viewed as the limiting case of the Navier

friction condition (46) as 𝛼/𝜈 →∞. Unlike the free-slip condition

(40) or the friction condition (47), the no-slip condition (51) does

not directly prescribe the the boundary vorticity𝑤𝜕 . Instead, the

boundary vorticity is determined implicitly through the system’s

dynamics. In the computational setting, the boundary vorticity is

characterized as follows:

The boundary vorticity𝑤𝜕 : 𝜕𝑀 → R is chosen so that,
after one time step of simulating the full system (38)

using this boundary vorticity, the reconstructed velocity
(31) satisfies 𝑢𝜕 = 0.

This implicit step is implemented by a fixed point iteration as detailed

in Section 5.3.2. Figure 6 shows an example of (52) imposed on a

surface with moving boundary.

3.3.1 Discussion. Incorporating the no-slip boundary condition

into the vorticity formulation is not straightforward. There is a

long history of research on this topic [Gresho 1991; Rempfer 2006].

Here, we briefly review key developments and clarify certain points,

particularly revising some statements where harmonic components

were typically neglected in prior work.

The no-through and no-slip conditions translate into𝜓 =
𝜕𝜓
𝜕n =

0 for the streamfunction 𝜓 at the boundary.
5
Early approaches

imposed Δ𝜓 = 𝑤 together with 𝜓 =
𝜕𝜓
𝜕n = 0 at the boundary.

Thom [1933], Roache [1976], and others (see the comprehensive

review by E and Liu [1996]) set 𝑤𝜕 = Δ𝜓 |𝜕𝑀 . However, these

conditions were later shown to be overdetermined. To address this,

E and Liu [1996] suggested imposing 𝑤𝜕 = Δ𝜓 |𝜕𝑀 in an explicit

time-splitting scheme, noting that it produces roughly the correct

amount of vortex sheet.

The problem of overdetermined boundary condition𝜓 =
𝜕𝜓
𝜕n =

0 was pointed out by [Quartapelle 1981; Quartapelle and Valz-

Gris 1981]. This overdetermination constraints the vorticity field

𝑤 to a smaller admissible subspace. Explicitly, it requires that 𝑤

be 𝐿2-orthogonal to all harmonic functions on 𝑀 . However, this

characterization did not consider harmonic components and thus

fails in non-simply-connected domains. Here, we provide a revised

version of the Quartapelle–Valz-Gris condition:

Theorem 3.3 (Revised Quartapelle–Valz-Gris condition). For each
𝑓 : 𝜕𝑀 → R, let 𝜙 𝑓 : 𝑀 → R denote its harmonic extension to the
interior, defined by the Dirichlet problem Δ𝜙 𝑓 = 0 with 𝜙 𝑓 |𝜕𝑀 = 𝑓 .
Under the Navier–Stokes equations with the no-slip condition, the
vorticity𝑤 and the harmonic coefficients (𝑐1, . . . , 𝑐𝑚) satisfy∬

𝑀

𝜙 𝑓𝑤 𝑑𝐴 +
𝑚∑︁
𝑖=1

𝑐𝑖

∮
𝜕𝑀

𝑓 ℎ𝑖𝜕 𝑑𝑠 = 0 (53)

for all 𝑓 : 𝜕𝑀 → R.

Proof. See Appendix C.3. □

Amodern understanding of the vorticity and the no-slip condition

emphasizes that vortices are generated at the boundary to maintain

the no-slip condition. Lighthill [1963] proposed vorticity generation

proportional to the negative of the slip velocity. Chorin [1973; 1978;

1980] developed vortex sheet boundary layer models aligned with

Lighthill’s ideas. Anderson [1989] showed that the vorticity flux

from the boundary can be derived from the Quartapelle–Valz-Gris

condition. See also [Koumoutsakos et al. 1994; Kempka et al. 1995].

Our implicit solve for the no-slip condition follows this general

approach.

Cottet [1988; 2000] introduces a different method, recently adopted

by [Wang et al. 2024] in the computer graphics community. Rather

than using a streamfunction, Cottet reconstructs velocity from

vorticity via the equation (𝑑𝛿 + 𝛿𝑑)u♭ = 𝛿𝜔 with u = 0 on the

boundary. This equation does not directly imply the divergence-free

condition 𝛿u♭ = 0. Cottet additionally suggests imposing 𝜔 = 𝑑u♭

at the boundary in the convection-diffusion equation for vorticity.

5
The condition 𝜓 =

𝜕𝜓

𝜕n = 0 is no longer strictly true in the presence of harmonic

components. With harmonic components included, the condition becomes𝜓 =
𝜕𝜓

𝜕n +∑𝑚
𝑖=1
𝑐𝑖ℎ𝑖𝜕 = 0.
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𝑀+

𝑀−

𝑀

𝑀+

𝑀−

𝑀

𝑜 𝑜

𝜋 𝜋

Fig. 7. Even (left) and odd (right) vector fields on𝑀

This is implemented as a Neumann condition
𝜕𝑤
𝜕n = 𝜕

𝜕n (curlu) −
1

|𝜕𝑀 |
∮
𝜕𝑀

𝜕
𝜕n (curlu), where the mean-removal term is to enforce∬

𝜔 = 0 at all time, based on the circulation theorem (or as a special

case of the classical Quartapelle–Valz-Gris condition).

Wang et al. [2024] recently applied Cottet’s boundary treatment

in graphics. They use it for the velocity reconstruction via −Δu =

grad𝑤 (in 2D) with u = 0 at the boundary. In this Poisson problem

adjacent to the boundary, the value of 𝑤𝜕 is required; they set

𝑤𝜕 = curlu by back-referencing the velocity, forming a modified

Poisson equation [Wang et al. 2024, § 4.1–4.2]. However, this system

is degenerate when the domain is non-simply-connected [Wang

et al. 2024, § 7]. Although their solver appears to select solutions that

yield qualitatively reasonable dynamics [Wang et al. 2024, Fig. 11],

the scheme enforces only u · n = 0 and the tangential part of the

velocity is not fully constrained.

4 NON-ORIENTABLE SURFACES
The core theory presented in the preceding sections assumes that

the surface 𝑀 is orientable. The 90
◦
rotation operator J and the

Hodge stars ★ both depend on the orientation of𝑀 . In particular,

the vorticity function, defined as the Hodge star of the vorticity

2-form, is not globally well-defined on non-orientable surfaces, as its

sign flips when traversing, e.g., a Möbius strip. Nevertheless, fluids

can flow on both orientable and non-orientable surfaces. How, then,

can we apply the vorticity formulation on a non-orientable surface?

In this section, we extend our theory to fluids on non-orientable

surfaces by introducing a useful technique: doubling the domain𝑀

to obtain a closed, orientable surface𝑀 . We show that solving the

Navier–Stokes equations on𝑀 is equivalent to solving them on𝑀 .

This approach enables fluid simulations on a non-orientable surface

𝑀 by solving Navier–Stokes equation on its orientable double cover

𝑀 . The formulation also provides a new perspective on the natural

boundary condition (40) (Section 4.3).

4.1 Double Cover
The following construction of double cover turns any surface𝑀

with boundary and any closed non-orientable surface𝑀 into a closed
orientable surface𝑀 .

Case 1 𝑀 is orientable and has boundary. The double cover 𝑀 is

constructed by taking two copies of𝑀 and gluing their cor-

responding boundary points together. More precisely, let

𝑀+, 𝑀− ≃ 𝑀◦ be two copies of the interior of 𝑀 , and let

Γ ≃ 𝜕𝑀 be a copy of the boundary. Define𝑀 := 𝑀+ ⊔ Γ ⊔𝑀− ,
and let 𝜋 : 𝑀 → 𝑀 be the projection that maps each 𝑥 ∈ 𝑀
to the point in𝑀 from which it was copied. The topology of

𝑀 is defined so that 𝜋 is continuous.

Case 2 𝑀 is non-orientable. Let𝑀 be the standard oriented double

cover of𝑀 with the boundary points glued together. A con-

crete construction goes as follows. Choose a set of curves

𝐶 ⊂ 𝑀◦ as cuts in the interior𝑀◦ of𝑀 , so that𝑀′ := 𝑀◦ \𝐶
is orientable (i.e., 𝑀′ is a maximal oriented subdomain of

𝑀◦).6 Let𝑀′+,𝑀
′
− ≃ 𝑀′ be two copies of𝑀′, let 𝐶+,𝐶− ≃ 𝐶

be two copies of 𝐶 , and let Γ ≃ 𝜕𝑀 be a copy of the boundary

(which may be empty). Define𝑀 := 𝑀′+ ⊔𝑀′− ⊔𝐶+ ⊔𝐶− ⊔ Γ,

and let 𝜋 : 𝑀 → 𝑀 be the projection that sends each 𝑥 ∈ 𝑀
to the point in𝑀 from which it originates.

𝐶

𝑀 ′
Γ

𝑀 ′−

𝑀 ′+

𝐶+

𝐶−
𝑀

𝑀

The topology of𝑀 is defined so that it is orientable—meaning,

in particular, that 𝐶+ is adjacent to𝑀′+ on one side and𝑀′−
on the other—and such that 𝜋 is continuous. The resulting

object (𝑀, 𝜋) is independent of the choice of the cuts 𝐶 .
Note that𝑀 is always an orientable closed surface by construction.

If𝑀 is orientable with genus 𝑔 and 𝑏 boundary components, then

genus(𝑀) = 2𝑔 + max(𝑏 − 1, 0). If 𝑀 is non-orientable and is the

connected sum of 𝑘 real projective planes with 𝑏 disks removed,

then genus(𝑀) = 𝑘 − 1 + 𝑏.
The double cover (𝑀, 𝜋) is naturally equipped with an involutive

map 𝑜 : 𝑀 → 𝑀 that swaps the corresponding points in𝑀+ and𝑀−
for orientable𝑀 , and swaps the corresponding points in𝑀′+, 𝑀

′
− and

𝐶+, 𝐶− for non-orientable 𝑀 . Explicitly, 𝑜 is defined by 𝜋 ◦ 𝑜 = 𝜋 ,

and 𝑜 (𝑥) ≠ 𝑥 for 𝑥 ∉ Γ. The map 𝑜 is an involution, i.e., 𝑜2 = id
𝑀
,

and Γ is the set of fixed points of 𝑜 .

Both 𝜋 and 𝑜 are isometries.

4.1.1 Curvature of 𝑀 . Since 𝑀+ and 𝑀− (resp. 𝑀′+ and 𝑀
′
−) are

isometric to𝑀◦ (resp.𝑀′), the Gaussian curvature on𝑀 \ Γ is given

by 𝐾 ◦ 𝜋 . We may abbreviate 𝐾 ◦ 𝜋 as 𝐾 since they have the same

values. However, the Gaussian curvature 𝐾 of 𝑀 is not simply 𝐾

everywhere. The interface Γ forms a sharp ridge, with concentrated

Dirac-𝛿 Gaussian curvature. Precisely:

𝐾 = 𝐾 + 2𝜅g𝛿Γ . (54)

4.1.2 Even and Odd Fields. The map 𝑜 : 𝑀 → 𝑀 induces a pullback

operator 𝑜∗ that acts on fields. These fields can be scalar functions

Ω0 (𝑀), vector fields 𝔛(𝑀), or differential forms Ω𝑘 (𝑀). The pull-
back 𝑜∗ is linear and involutive (since 𝑜 is an involution). Thus, the

eigenvalues of 𝑜∗ are ±1. We refer to elements of the +1-eigenspace

as even field, and to elements of the −1-eigenspace as odd field.

6
In practice, for a mesh𝑀 , one may use a spanning tree to orient the faces of𝑀 , with

𝐶 given by the edges where adjacent faces remain inconsistently oriented.
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Fig. 8. Among the two-dimensional space of harmonic fields on the torus—
the oriented double cover of the Klein bottle—only one dimension, corre-
sponding to the even harmonic field, contributes to the harmonic vector
field on the Klein bottle, as shown on the left. The other dimension, spanned
by an odd harmonic field, does not descend to the Klein bottle, as illustrated
on the right by the visible discontinuity.

That is, an even field 𝑓 satisfies 𝑜∗ 𝑓 = 𝑓 , and an odd field satisfies

𝑜∗ 𝑓 = −𝑓 .7
Every field 𝑓 admits a unique decomposition into even and odd

parts: 𝑓 =
𝑓 +𝑜∗ 𝑓

2
+ 𝑓 −𝑜∗ 𝑓

2
.

Even functions take the same value at opposite points, while

odd functions take values of equal magnitude but opposite sign. In

particular, odd functions vanish on Γ.
Even vector fields v satisfy𝑑𝑜 (v) = v; odd ones satisfy𝑑𝑜 (v) = −v.

See Figure 7. Divergence-free even vector fields must be tangent to

Γ. In particular, 𝔛
div
(𝑀) � 𝔛

div,even
(𝑀).

The operators ♯, ♭, 𝑑, grad, div preserve the evenness and oddness.

The Hodge star★ and the 90
◦
rotation operator 𝐽 switch the even/odd

parity. Wedge product and inner product respect the parity: even ·
even = odd · odd = even, and even · odd = odd.

4.1.3 Hodge Decomposition. Since the exterior calculus operators
respect parity, the Hodge decomposition respects the even/odd split-

ting. Note that 1-forms on𝑀 satisfying the co-Dirichlet (Neumann)

boundary condition correspond to Ω1

even
(𝑀), and 1-forms satisfying

the Dirichlet boundary condition correspond to Ω1

odd
(𝑀). These

admit the Hodge decomposition:

Ω1

even
(𝑀) = 𝑑Ω0

even
(𝑀) ⊕ 𝛿Ω2

even
(𝑀) ⊕ H1

even
(𝑀), (55)

Ω1

odd
(𝑀) = 𝑑Ω0

odd
(𝑀) ⊕ 𝛿Ω2

odd
(𝑀) ⊕ H1

odd
(𝑀) . (56)

The space of velocity 1-forms𝔛
div
(𝑀)♭ corresponds to 𝛿Ω2

even
(𝑀) ⊕

H1

even
(𝑀). Thus, harmonic vector fields in 𝔛

div
(𝑀) correspond to

even harmonic 1-forms, while streamfunctions are odd functions (or

equivalently, even 2-forms).

If𝑀 is non-orientable, its double cover𝑀 has 2·genus(𝑀) linearly
independent harmonic 1-forms, half of which are even. For example,

the Klein bottle is double-covered by a torus. The torus has a 2D space

of harmonic fields—one even and one odd—so only one harmonic

field contributes to the harmonic velocity on the Klein bottle. See

Figure 8.

7
Odd differential forms are sometimes referred to as pseudoforms, twisted forms, or
forms of odd type, as introduced in de Rham’s work [1984].

Field Symbol Type

Velocity u even div-free vector field

Velocity 1-form u♭ even 1-form

Vorticity function 𝑤 odd function

Vorticity 2-form 𝜔 even 2-form

Streamfunction 𝜓 odd function

Harmonic fields h𝑖 even harmonic vector field

Gaussian curvature 𝐾 even function

Gaussian curvature density Ω̃ even density or odd 2-form

Table 1. Type of fields on the double cover𝑀 .

4.2 Navier–Stokes Equations on the Double Cover
Each quantity in the Navier–Stokes system on𝑀 lifts to either an

even or odd field on 𝑀 , as summarized in Table 1. If the initial

data respect this parity structure, then the evolution under the

Navier–Stokes equations preserves it.

This means our Navier–Stokes formulation for orientable surfaces

directly extends to non-orientable ones, by simulating the dynamics

on the orientable double cover using initial data with the parity

structure described in Table 1.

4.3 Relation to Boundary Conditions
As shown in (54), the Gaussian curvature of𝑀 contains a singular

curvature sheet along Γ. By Theorem 2.3, the vorticity function𝑤

exhibits a jump across Γ:

[𝑤]Γ = 4𝜅g𝑢𝜕 . (57)

Since𝑤 is an odd function on𝑀 , it vanishes at Γ , and has opposite

limiting values from either side: 2𝜅g𝑢𝜕 from𝑀+, and −2𝜅g𝑢𝜕 from

𝑀− . Thus, we recover the natural (free-slip) boundary condition

(40) on𝑀 automatically.

To simulate Navier friction or no-slip boundary conditions on 𝑀

using 𝑀 , one cuts Γ open, thereby turning 𝑀 into a surface with

boundary, and imposes the desired boundary condition on 𝜕𝑀 .

5 DISCRETIZATION
Our numerical method for simulating (38) is based on the discretiza-

tion following [Azencot et al. 2014] and [Yin et al. 2023].

For spatial discretization, the surface𝑀 is represented by a triangle

mesh (P, E, F), where P is the set of vertices, E the set of edges, and F
the set of faces. The vorticity function𝑤 and the streamfunction𝜓

are discretized at vertices, while the vector fields u, h𝑖 are discretized
on faces. The discrete Gauss–Bonnet curvature is also assigned to

faces. Details of the discrete operators and the face-based discrete

Gauss–Bonnet curvature are provided in Section 5.1.

For time integration, we employ an implicit-explicit (IMEX) scheme.
Specifically, we split the system into a stiff part and a non-stiff part.
The stiff part consists of the viscous term 𝜈 (Δ𝑤 + 2 curl(𝐾u)) in
the vorticity equation, while the remaining terms in the vorticity

equation and the evolution equation of the harmonic components are

classified as non-stiff. The non-stiff part is integrated with an explicit

4th-order Runge–Kutte (RK4) method [Yin et al. 2023], alternating
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with an implicit backward Euler method applied to the stiff viscous

term. The full procedure is described in Section 5.2.

For simplicity, we first present the method for system with the

free-slip boundary condition; the incorporation of the friction and

no-slip boundary conditions is described separately in Section 5.3.

5.1 Discrete Surface and Its Operators
5.1.1 Discrete Differential Operators. A discrete vector field u ∈
ΓF (𝑇𝑀) is defined as a piecewise constant vector uf ∈ 𝑇f𝑀 assigned

on each triangle f ∈ F. The directional derivative operator associated
with u, denoted as [∇u] : R |P | → R |P | , acts on a discrete function

𝑓 = (𝑓p)p∈P ∈ R |P | as

( [∇u] 𝑓 )p := 1∑
f≻p𝐴f

∑
f≻p𝐴f ⟨uf , (grad 𝑓 )f⟩ (58)

where 𝐴f is the area of triangle f, and grad : R |P | → ΓF (𝑇𝑀)
computes the piecewise constant gradient of the linear interpolation

of the discrete function 𝑓 .

The divergence operator div : ΓF (𝑇𝑀) → R |P | is defined as the
negative 𝐿2

-adjoint of the gradient, div = − grad
∗
. Explicitly, div =

−𝐴−1

P grad
⊺ 𝐴F where 𝐴F is the diagonal matrix of triangle areas,

and 𝐴P is the diagonal matrix of the vertex areas.

The scalar curl operator is defined as the composition of the

divergence with the facewise 90
◦
counterclockwise rotation: 𝐽Fu =

(𝐽fuf)f∈F. That is, curl = − div ◦𝐽F : ΓF (𝑇𝑀) → R |P | .
The Laplacian Δ = div ◦ grad : R |P | → R |P | corresponds to the

cotangent Laplacian on mesh𝑀 . When assembled in matrix form, it

takes the form Δ = −𝐴−1

P 𝐿 ∈ R |P |× |P | , where 𝐿 = grad
⊺ 𝐴F grad is

the cotangent stiffness matrix.

5.1.2 Interior and Boundary Vertices. We decompose the vertex set

into the interior and boundary parts: P = I⊔B, where I and B denote

the interior and boundary vertex sets. If𝑀 is a closed surface, then

P = I and B = ∅.

5.1.3 Discrete Gauss Curvature. We discretize Gaussian curvature

at faces as the total angle defect divided by the triangle area, defined

as follows.

For each vertex p incident to face f, let ∠p,f denote the interior
angle of the triangle f at vertex p. Define the rescaled interior angle
as

∠̃p,f :=

{
2𝜋∑

f′≻p ∠p,f′
∠p,f for p ∈ I

∠p,f for p ∈ B.
(59)

This angle is rescaled in the sense that the total angle around an

interior vertex is

∑
f≻p ∠̃p,f = 2𝜋 . Geometrically, ∠̃p,f is the geodesic

corner angle obtained by smoothing the vertex cone and measuring

angles in the tangent plane at the vertex. This modification of angle,

however, no longer satisfies the total interior angle of a triangle

being 𝜋 , and thereby renders a total angle defect in each triangle. For

each triangle f ∈ F, define the discrete Gaussian curvature 𝐾 ∈ R |F |
as

𝐾f := 1

𝐴f

(∑
p≺f ∠̃p,f − 𝜋

)
. (60)

On a closed surface, (𝐾f)f∈F satisfies the discrete Gauss–Bonnet

theorem

∑
f 𝐴f𝐾f = 2𝜋 𝜒 (𝑀), where 𝜒 (𝑀) = |P| − |E| + |F| is the

Euler characteristic.

To define the discrete Gauss–Bonnet curvature𝐾Ω
f (cf. (3.2)) wemust

incorporate the geodesic curvature into 𝐾f . We do so by introducing

another rescaled angle similar to (59) but this time also rescales the

boundary angles:

∠̃Ωp,f :=


2𝜋∑

f′≻p ∠p,f′
∠p,f for p ∈ I

𝜋∑
f′≻p ∠p,f′

∠p,f for p ∈ B.
(61)

Define the discrete Gauss–Bonnet curvature at face f as

𝐾Ω
f

:= 1

𝐴f

(∑
p≺f ∠̃

Ω
p,f − 𝜋

)
. (62)

When the surface has no boundary, 𝐾Ω
f = 𝐾f . In general, these cur-

vatures satisfy the discrete Gauss–Bonnet theorem with boundary:∑
f 𝐴f𝐾

Ω
f = 2𝜋 𝜒 (𝑀).

5.2 Main Algorithm with the Free-Slip Condition
We now discretize the system (38) governing the vorticity field

𝑤 ∈ R |P | and the coefficient tuple c = (𝑐𝑖 )𝑚𝑖=1
∈ R𝑚 . In this section,

we assume the free-slip boundary condition (Section 3.1). Specifically,

we discretize system (45). The modification into other boundary

conditions is detailed in Section 5.3.

Since the vorticity vanishes on the boundary following the for-

mulation of (45), we have𝑤B = 0. Thus, the fluid state is reduced

to an interior vorticity field𝑤I ∈ R |I | and c ∈ R𝑚 . Given a precom-

puted 𝐿2
-orthonormal harmonic basis (h𝑖 )𝑚𝑖=1

with h𝑖 ∈ ΓF (𝑇𝑀),
the corresponding velocity field u ∈ ΓF (𝑇𝑀) is obtained by solving

the Poisson problem (32) followed by the reconstruction step (31),

using the discrete operators introduced in Section 5.1. We denote

this process as u = Velocity(𝑤I, c; h):

Velocity(·, ·; h) : R |I | × R𝑚 → ΓF (𝑇𝑀) (63a)

Velocity(𝑤I, c; h) := −𝐽 grad𝜓 +∑𝑚𝑖=1
𝑐𝑖h𝑖 (63b)

where 𝐿II𝜓I = (𝐴P)II𝑤I, 𝜓B ≡ 0. (63c)

Using this velocity and the discrete operators and curvature defined

in Section 5.1, the system (45) translates into the following semi-

discrete form:

𝑑
𝑑𝑡
𝑤I =

Advect(u,𝑤 )︷        ︸︸        ︷
−[∇u] (I,:)𝑤 +

Diffuse(u,𝑤 )︷                                       ︸︸                                       ︷
𝜈Δ(I,:)𝑤 + 2𝜈 curl(I,:) ((𝐾Ω

f uf)f∈F), (64a)

𝑑
𝑑𝑡
𝑐𝑖 =

∑
f∈F𝐴f

(
−𝑤f ⟨𝐽fuf , h𝑖,f⟩ + 2𝜈𝐾Ω

f ⟨uf , h𝑖,f⟩
)

︸                                                  ︷︷                                                  ︸
HarmonicRate(u,𝑤 )

, (64b)

where𝑤f =
1

3

∑
p≺f 𝑤p is the vorticity field interpolated to the face,

and𝑤B is kept zero.

We use an IMEX scheme (Algorithm 1) to integrate (64) in time,

treating the nonstiff terms—namely Advect(u,𝑤) in (64a) and

HarmonicRate(u,𝑤) of (64b) (cf. EvalRHS in Alg. 1)—with an

explicit fourth-order Runge–Kutta method (cf. RK4Step), and the

stiff term Diffuse(u,𝑤) with an implicit Euler method: given𝑤old

I
at the previous time step, solve the the vorticity𝑤new

I at the end of

the time interval satisfying

𝑤new

I −𝑤old

I = 𝛥𝑡 Diffuse(unew,𝑤new). (65)
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This is equivalent to

(𝐴P + 𝜈𝛥𝑡𝐿)II𝑤new

I = (𝐴P)II (𝑤old

I + 2𝜈𝛥𝑡 curl(I,:) (𝐾Ωunew)) (66)

which can be solved by a fixed-point iteration (cf. FixedPoint).
This fixed-point iteration typically converges in 2–3 iterations with

tolerance 𝜀 = 10
−5
.

Algorithm 1 IMEX Scheme for (45)

1: h = (h𝑖 )𝑚𝑖=1
← An orthonormal basis for ℌ;

2: 𝑤 = (𝑤p)p∈P ← Initialize vorticity;𝑤B ← 0;

3: c = (𝑐𝑖 )𝑚𝑖=1
← Initialize harmonic coefficients;

4: 𝛥𝑡 > 0← Set time step;

5: tol > 0← Set fixed-point iteration tolerance;

6: for each frame do
7: [ 𝑤I

c ] ← RK4Step (EvalRHS, [ 𝑤I
c ], 𝛥𝑡) ; ⊲ explicit step

8: 𝑤I ← FixedPoint (𝑤I, c, 𝛥𝑡, tol) ; ⊲ implicit step

9: export Velocity (𝑤I, c; h);
10: function EvalRHS(𝑤I, c)
11: u← Velocity (𝑤I, c; h); ⊲ cf. (63)
12: ¤𝑤I ← Advect(u,𝑤); ⊲ cf. (64a)
13: ¤c← HarmonicRate(u,𝑤); ⊲ cf. (64b)
14: return ( ¤𝑤I, ¤c);
15: function FixedPoint(𝑤I, c, 𝛥𝑡 , tol)

16: 𝑤old

I ← 𝑤I;

17: do ⊲ cf. (65)
18: u← Velocity (𝑤I, c; h);
19: 𝑤̃I ← 𝑤old

I + 2𝜈𝛥𝑡 curl(I,:) (𝐾Ωu);
20: 𝑤̃I ← (𝐴P + 𝜈𝛥𝑡 𝐿)−1

II (𝐴P)II𝑤̃I;

21: 𝜀 ← ∥𝑤̃ −𝑤 ∥;𝑤 ← 𝑤̃ ;

22: while 𝜀 > tol

23: return𝑤I;

24: function RK4Step(𝐹 ∈ (T→ T), 𝑥 ∈ T, 𝛥𝑡 ∈ R)
25: 𝑘1 ← 𝐹 (𝑥); 𝑘2 ← 𝐹 (𝑥 + 𝛥𝑡/2 · 𝑘1);
26: 𝑘3 ← 𝐹 (𝑥 + 𝛥𝑡/2 · 𝑘2); 𝑘4 ← 𝐹 (𝑥 + 𝛥𝑡 · 𝑘3);
27: return 𝑥 + 𝛥𝑡/6 · (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4);

5.3 Friction and No-Slip Boundary Conditions
Algorithm 1 is a solver for fluids on closed surfaces or surfaces with

free-slip boundary. We now describe its modifications into having

friction boundary and no-slip boundary.

5.3.1 Navier Friction Boundary. As in the continuous theory (Sec-

tion 3.2), adding friction amounts to modifying the Gauss–Bonnet

curvature at the boundary (see (49) and (50)).

Continuing the definition of discrete Gauss–Bonnet curvature

in Section 5.1.3, we introduce the rescaled angle that incorporate

friction (cf. (61)):

∠̃Ω,𝛼/(4𝜈 )p,f
:=

𝜋

(∑f≻p ∠p,f) + 𝛼
4𝜈 ℓp

∠p,f for p ∈ B (67)

where ℓp is the averaged boundary edge length at vertex p ∈ B. For
interior vertices p ∈ I, there is no modification: ∠̃Ω,𝛼/(4𝜈 )p,f = ∠̃Ωp,f .

Define the discrete Gauss–Bonnet curvature with friction 𝛼
4𝜈 :

𝐾
Ω,𝛼/(4𝜈 )
f

:= 1

𝐴f

(∑
p≺f ∠̃

Ω,𝛼/(4𝜈 )
p,f − 𝜋

)
. (68)

To incorporate the friction boundary, the only algorithmic modifi-

cation is replacing 𝐾Ω
by 𝐾Ω,𝛼/(4𝜈 )

in Algorithm 1.

Geometrically, this modification amounts to overwriting and

inflating the value of the total interior angle of the boundary polygon∑
f≻p ∠p,f , and thereby decreasing the exterior angle echoing the

expression (𝜅g − 𝛼
4𝜈 ) in (49). The net result decreases the rescaled

angle ∠̃ at the boundary, introducing negative Gaussian curvature

into the neighboring triangle.

The limiting case of infinity friction
𝛼
4𝜈 → ∞ corresponds to

setting the rescaled angle to zero:

∠̃Ω,∞p,f = 0 for p ∈ B. (69)

5.3.2 No-Slip Boundary. Oneway to approximate the no-slip bound-

ary condition is to apply the friction boundary (Section 5.3.1) with

infinite friction coefficient, i.e. setting the rescaled angle to zero (69).

Alternatively, we impose the condition 𝑢𝜕 = 0 by introducing a

non-zero boundary vorticity𝑤B as in the description in Section 3.3.

For this latter setting, the system equation is reverted to (38)

with a nonzero 𝑤B. In particular, the Gaussian curvature 𝐾Ω
f is

replaced by 𝐾f (given by (60)), that is, without the curvature sheet

from the boundary. Note that with a non-zero 𝑤B, a boundary

contribution

∑
e∈𝜕𝑀 𝜈 ⟨(h𝑖 )f≻e, ee⟩𝑤eℓe need to be added in (64b).

Here, ee is the unit edge direction and ℓe the edge length of edge e,
and𝑤e =

∑
p≺e

𝑤p
2

for p ∈ B denotes the vorticity field interpolated

to the boundary edge.

The boundary vorticity field 𝑤B is chosen to ensure that the

boundary velocity

(𝑢𝜕)e = ⟨uf≻e, ee⟩ (70)

vanishes at each boundary edge e ∈ 𝜕𝑀 (cf. Section 3.3). This condi-

tion is enforced through a modified fixed-point iteration (Alg. 2).

Algorithm 2 Fixed-Point Iteration for No-Slip Boundary Condition

1: function FixedPointNoSlip(𝑤 , c = {𝑐𝑖 }, 𝛥𝑡 , tol𝑤 , tol𝑢 , 𝛽)

2: 𝑤old ← 𝑤, cold ← c;
3: do
4: u← Velocity (𝑤I, c; h);
5: 𝑤̃I ← 𝑤old

I + 2𝜈𝛥𝑡 (curl(𝐾u))I;
6: 𝑤̃B ← 𝑤̃B + 𝛽 (𝑢𝜕)B ⊲ (𝑢𝜕)B := (70) averaged to vertex

7: 𝑤̃I ← 𝑀−1

II ((𝐴P𝑤̃)I −𝑀IB𝑤̃B), 𝑀 := 𝐴P + 𝜈𝛥𝑡𝐿;
8: 𝑐𝑖 ← 𝑐old

𝑖
+ 𝛥𝑡 ∑e∈𝜕𝑀 𝜈 ⟨(h𝑖 )f≻e, ee⟩𝑤̃𝜕,eℓe;

9: 𝜀𝑤 ← ∥𝑤̃ −𝑤 ∥;𝑤 ← 𝑤̃ ;

10: 𝜀c ← ∥c̃ − c∥; c← c̃;
11: while 𝜀𝑤 > tol𝑤 or 𝜀c > tolc or ∥𝑢𝜕 ∥ > tol𝑢

12: return𝑤 ;

The relaxation parameter 𝛽 > 0 is chosen such that 𝛽ℓp ≈ 1,

where ℓp is the averaged edge length at p.

High-friction v.s. no-slip. As we will demonstrate in Figure 16,

the high-friction boundary (Algorithm 1 with (69)) and the no-slip

boundary (Algorithm 2) produce similar fluid-dynamical outcomes.

However, the high-friction boundary treatment is significantly more

efficient. The fixed-point iteration in Algorithm 1 remains robust

even under infinite friction, whereas the fixed-point iteration in

Algorithm 2 can become unstable at large Reynolds numbers, which

can be mitigated by having higher resolution near the boundary.
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6 NUMERICAL EXAMPLES
Our computation is implemented in SideFX Houdini. These tests

were conducted on a Dell 8940 Desktop equipped with an Intel

CPU i9-11900K operating at 3.50 GHz, 64 GB of RAM. For typical

meshes—such as the example shown in Figure 15 with approximately

22K vertices— under free-slip or friction boundary conditions, the

simulation using Alg. 1 takes about 90 minutes in total (about 5

seconds per frame). For no-slip condition shown in Figure 6, which

has 16K vertices, the computation takes about 27 minutes (about 6

seconds per frame) using Alg. 1 and Alg. 2.

6.1 Viscous Laplacian
A common treatment of viscous dissipative in surface vortex dy-

namics involves only the Laplace–Beltrami operator applied to the

vorticity. That is, in this approach the vorticity equation is modeled

as ¤𝑤 +∇u𝑤 = 𝜈Δ𝑤 [Ebin and Marsden 1970; Yaeger et al. 1986; Elcott

et al. 2007; Azencot et al. 2014; Vanneste 2021; Tao et al. 2024], which

is equivalent to replacing the viscous Laplacian (Definition 2.9) in

the Navier–Stokes equation (20) with the Hodge-Laplacian (Defini-

tion 2.8).

Contrary to this standard approach, we demonstrate that the

curvature-dependent term 2𝜈 curl(𝐾u) in our vorticity equation (28)

is crucial for capturing the correct dynamical behavior of fluid flows

on curved surfaces.

We compare ourmethodwith that of [Azencot et al. 2014], which is

based on solving ¤𝑤 + ∇u𝑤 = 𝜈Δ𝑤 without the curvature-dependent

term. To isolate the effects of curvature and avoid dependency

of boundaries and harmonic components, the comparisons are

performed on topological spheres.

In Figure 9, the vorticity field is initialized on a round sphere to

represent a rigid body rotation. In the absence of shear deformation in

a rigidmotion, viscous dissipation should not occur, and conservation

of angular momentum implies that the fluid should maintain its

rotation indefinitely. Our method correctly preserves this rigid

motion. In contrast, the model ¤𝑤 + ∇u𝑤 = 𝜈Δ𝑤 fails to do so: the

velocity rapidly decays to zero. This behavior is expected, as the

Laplace–Beltrami operator on a closed surface has only constant

functions in its kernel. Since the vorticity on a closed surface has

zero mean, the dissipative term in this model ultimately drives the

vorticity to zero.

Figure 10 presents another comparison, this time on a surface

of revolution with non-uniform curvature. The initial condition

is again a rigid body rotation. Our method preserves this motion,

while the previous method introduces a non-physical distortion in

the flow and eventually decays to rest.

6.2 Harmonic Dynamics and Preservation of Killing Modes
We further demonstrate that the evolution for the harmonic compo-

nent in (38) is essential for accurately simulating viscous flows on

non-simply-connected surfaces.

In Figure 11, we initialize the vorticity field on a torus with

𝑤 = −⟨n, ŷ⟩ and 𝑐1 = 𝑐2 = 0 on a torus, where n is the surface normal,

and ŷ is the upward-pointing unit vector. We compare the results of

our full system (38), which includes harmonic evolution, against

a version of the system with the harmonic dynamics disabled (i.e.,
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Fig. 9. Comparison of viscosity modeled using the viscous Laplacian ΔV (our
method) versus the Hodge Laplace ΔH (previous methods). An initial rigid
body rotation is preserved in our model. In contrast, the Hodge Laplacian
model—corresponding to the vorticity equation ¤𝑤 + ∇u𝑤 = 𝜈Δ𝑤—fails to
preserve rigid body motion and instead dissipates it.

Time

Ours

[Azencot
et al. 2014]

Fig. 10. Viscous flow on a surface of revolution with non-uniform curvature,
initialized with a rigid body rotation. Our method correctly preserve the
rigid body motion, and thus the advected textures, while previous vorticity
methods using ¤𝑤 + ∇u𝑤 = 𝜈Δ𝑤 produce non-physical distortions. The
initial angular velocity is 1 and the viscosity is 𝜈 = 0.1. The sequence shows
frames 1, 30, 75, 150 with 𝛥𝑡 = 0.1.

¤c = 0). At each time step, we extract both the harmonic component

and the Killing component of the velocity field.

When the harmonic evolution is omitted, the Killing fields on the

torus fail to be conserved, violating the conservation property stated

in Theorem 2.2. In contrast, when the harmonic field dynamics

are included, the Killing field component is successfully preserved.

Interestingly, we also observe a nontrivial interchange between the

harmonic component and the vorticity over time.

Figure 12 shows a simulation on an Enneper surface, which pos-

sesses an intrinsic Killing field that is not the restriction of a rigid

body motion in R3
. This surface has two boundaries, where we

impose the free-slip boundary condition. Even in this more gen-

eral setting, our method preserves the Killing mode, in agreement

with Theorem 2.2. As in Figure 11, the initial condition is given by

𝑤 = −⟨n, ŷ⟩ and 𝑐1 = 0. The flow relaxes to a pure Killing field.

6.3 Non-Orientatable surfaces
We demonstrate fluid simulation on non-orientable surfaces using

our algorithm and the double cover technique in Section 4.
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Fig. 11. Comparison of fluid dynamics on a torus using the full system (38)

(bottom right), which includes harmonic component evolution, versus a
system with harmonic dynamics disabled (top right), both initialized from
the same initial condition (left). The plots show the evolution of the Killing
field and harmonic field components over time. The full system preserves
the Killing component and reveals interaction between the harmonic and
vorticity components. In contrast, disabling the harmonic dynamics causes
the Killing component to be incorrectly damped out. Here 𝜈 = 0.1, 𝛥𝑡 = 0.1.
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Fig. 12. Viscous flow simulated on an Enneper surface, which possesses an
intrinsic Killing field. The free-slip condition is imposed at the boundary.
An initial flow (left) relaxes to the pure Killing field (right). The viscosity is
𝜈 = 0.1. The sequence shows frames 2, 50, 300 with 𝛥𝑡 = 0.1.

Fig. 13. Kelvin–Helmholtz instability on a Möbius strip. The initial condition
includes a vortex sheet along the boundary of the blue region and a nonzero
harmonic component, forming a jet within the blue region. The Möbius strip
has width 1, the initial jet speed is 0.1, the viscosity is 𝜈 = 10

−5, and the
time step is 𝛥𝑡 = 0.1. The sequence shows frames 1, 600, 780.

The Boy surface shown in Figure 1 has the topology of RP2
, whose

oriented double cover is a topological sphere. The Möbius strip
in Figure 13 is double-covered by a cylinder. The Klein bottle in
Figure 14 is double-covered by a torus. The simulation runs on the

oriented double covering mesh with an initial condition that obeys

the even/odd parity in Table 1.

Fig. 14. Fluid simulation on a Klein bottle. The initial condition is set with a
jet along the tube similar to that of Figure 13. The sequence shows frames
1, 50, 300.

6.4 Boundary Conditions
While the previous examples in Figures 5, 12, and 13 demonstrate

the behavior of fluids under the free-slip boundary condition, we

now examine the influence of friction applied at the boundary.

Figure 6 shows that the no-slip boundary condition on a moving

boundary—enforced via Algorithm 2—can set motion in an initially

stationary viscous fluid.

In Figure 15, a small disk is removed from a torus to represent a

fluid obstacle. The initial condition is set with zero vorticity but a

nonzero harmonic component, producing a background flow past

the obstacle. When the obstacle boundary is set as free-slip (top

row), a small amount of vorticity is generated, but insufficient to

form a von Kármán vortex street. In contrast, when the boundary is

given high friction—approximated by a near-infinite relative friction

coefficient
𝛼
4𝜈 ≫ 1 to emulating a no-slip boundary (bottom row)—

vortex shedding is significantly enhanced, resulting in the formation

of a von Kármán vortex street.

Figure 16 compares two no-slip boundary treatments: one using

a high-friction boundary, as in Figure 15 (bottom), and the other

enforcing the hard no-slip constraint computed with Algorithm 2.

While both approaches yield similar results, the high-friction method

is significantly more efficient. Moreover, the fixed-point iteration

in Algorithm 2 requires a finer mesh near the boundary to ensure

convergence, which is the domain employed for Figure 16.

Figure 17 compares flow past a high-friction obstacle at two

different viscosities, i.e., two different Reynolds numbers. From both

Figure 15 and Figure 17, one can observe that vorticity exhibits

greater numerical dispersion (spatial oscillation) at higher Reynolds

numbers and lower resolutions. Such dispersion is expected from

the discrete operator (58) [Azencot et al. 2014]. Note, however, that

these dispersive oscillations appear in the vorticity field (a derivative

quantity) and have little effect on the velocity field (an integrated

quantity) or on the resulting fluid animation.

Figure 18 presents a similar experiment conducted on the Klein

bottle.

7 CONCLUSION
We have presented a vorticity formulation of the Navier–Stokes

equations on general surfaces, along with a corresponding numerical
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Fig. 15. Flow past an obstacle on a torus. With identical initial conditions and fluid viscosity, the relative friction coefficient at the boundary affects the extent
of vortex shedding. Compared to the free-slip boundary (top row), the near-no-slip friction boundary (bottom row) produces pronounced vortex shedding,
leading to the formation of a von Kármán vortex street. The flows are visualized using vorticity and the backward-time Finite-Time Lyapunov Exponent (FTLE)
[Haller 2015]. The torus has radii 1 and 0.5; the initial harmonic component has 𝑐 = 10; the viscosity is 𝜈 = 10

−3; and the simulation uses 𝛥𝑡 = 0.002. The
sequence shows frames 61, 201, 751, 996.

algorithm. A central contribution is our emphasis on curvature-

related terms in the viscous force, which influence both the vorticity

equation and the evolution of harmonic components. By comparing

our full model with commonly used simplified variants that omit

curvature effects or harmonic dynamics, we demonstrate that only

the complete system reproduces physically meaningful behavior,

such as the conservation of frictionless rigid motions.

Our numerical scheme is conditionally stable, similar to the ap-

proaches in [Azencot et al. 2014] and [Yin et al. 2023], with the

advection step subject to a CFL condition. The implicit treatment

of the viscous force (Algorithm 1) and the no-slip condition (Algo-

rithm 2) is carried out using fixed-point iterations. While fixed-point

methods are simple to implement and converge quickly for the main

algorithm (Algorithm 1), they are less efficient for enforcing the

no-slip condition. We believe that Newton’s method may be better

suited for these implicit steps, and we leave its development for

future work.

A notable analytical result of our study is an explicit formula for

the jump condition of vorticity across a sheet of singular Gaussian

curvature. This mathematical result is used to simplify the enforce-

ment of boundary conditions: by interpreting boundary geodesic

curvature, augmented by the friction coefficient, as a singular sheet

of Gaussian curvature, the correct vorticity at the boundary naturally
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Fig. 16. Comparison between a high-friction boundary condition ( 𝛼
4𝜈

= 1000)
(left) and the no-slip condition computed with Algorithm 2 (right). Producing
similar results, the high-friction boundary is computationally more efficient.
The mesh is refined near the boundary. Frame 201 is shown.

Fig. 17. Flow past a high-friction ( 𝛼
4𝜈

= 1000) obstacle on a torus with
low viscosity (𝜈 = 10

−3, top) and high viscosity (𝜈 = 10
−2, bottom). Vortex

shedding occurs in both cases, forming von Kármán vortex streets at two
different Reynolds numbers. The sequence shows frames 61, 201, 301.

emerges through the jump condition. This approach is useful even

in flat domains with curved boundaries.

Under free-slip boundary condition, our formulation of the har-

monic evolution equation reveals a direct relationship between

boundary curvature, boundary velocity, and the dynamics of har-

monic components (Corollary 3.1). This observation may provide

new mathematical insight into the Kutta condition and complements

recent work aimed at developing its theoretical foundation [Taha

et al. 2023].

Finally, we describe a general technique for simulating fluids on

non-orientable surfaces by constructing their oriented double cover

and carefully distinguishing between even and odd types of vector

fields and differential forms. This approach, in particular, leads to a

natural extension of the computational Hodge decomposition to

non-orientable surfaces (Section 4.1.3).

We hope that these contributions will inspire further develop-

ments at the intersection of geometry and fluid dynamics.
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Fig. 18. Flow past an obstacle on a Klein bottle with identical initial condi-
tions and viscosity. Top row: friction boundary condition produces a von
Kármán vortex street. Bottom row: free-slip boundary condition. The ini-
tial harmonic component has 𝑐 = 0.5, and the viscosity is 𝜈 = 10

−5. The
sequence shows frames 30, 160, 390.
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A KILLING OPERATOR
This appendix elaborates on the Killing operator (Definition 2.1) and

provides proofs for Propositions 2.1, 2.2, 3.1, and Theorems 2.1, 2.2.

The proofs of Proposition 2.1 and Theorem 2.2 rely only on

elementary differential geometry and are presented in Appendix A.1

and Appendix A.2, respectively.

In contrast, the proofs of Propositions 2.2, 3.1, and Theorem 2.1

become significantly simpler once we establish the relationship

between the Killing operator and the Dolbeault operator 𝜕, under
the identification of the tangent bundle 𝑇𝑀 as a complex line bundle,
as explained in Appendix A.3.

A.1 Proof of Proposition 2.1
We show that (Ku)⟦a, b⟧ = 1

2
(⟨∇au, b⟩ + ⟨∇bu, a⟩), where Ku :=

1

2
Lu 𝑔.
Apply the product rule for Lie derivative:

Lu (𝑔⟦a, b⟧) = (Lu 𝑔)⟦a, b⟧ + 𝑔⟦Lu a, b⟧ + 𝑔⟦a,Lu b⟧. (71)

Express the metric as 𝑔⟦·, ·⟧ = ⟨·, ·⟩, and use the identity Lu a =

[u, a] = ∇ua− ∇au, which holds because the Levi-Civita connection

∇ is torsion-free. The left-hand side of (71) becomes

Lu⟨a, b⟩ = 𝑑u⟨a, b⟩ = ⟨∇ua, b⟩ + ⟨a,∇ub⟩, (72)

by metric compatibility of ∇. Substituting this into (71), we get:

����⟨∇ua, b⟩ +����⟨a,∇ub⟩ = 2(Ku)⟦a, b⟧ +���⟨∇ua − ∇au, b⟩
+ ⟨a,��∇ub − ∇bu⟩,

(73)

which implies the desired identity (6). □

A.2 Proof of Theorem 2.2
We show that the component of the velocity field along a Killing

vector field is conserved under the Navier–Stokes equation.

Let v ∈ ker(K) be a Killing vector field. By Proposition 2.1, it

satisfies the identity

⟨∇av, b⟩ = −⟨∇bv, a⟩. (74)

Suppose the velocity field u satisfies the Navier–Stokes equation

(20): ¤u+∇uu = − grad𝑝+𝜈ΔVu. We take the 𝐿2
inner product of both

sides of the equation with the Killing field v. The first term yields

⎷ ¤u, v⌄ = 𝑑
𝑑𝑡
⎷u, v⌄, which is the time derivative of the projection of u

onto the Killing field v. Our goal is to show that the remaining terms

⎷−∇uu − grad𝑝 + 𝜈ΔVu, v⌄ vanish, thus establishing 𝑑
𝑑𝑡
⎷u, v⌄ = 0.

We first observe that ⎷ΔVu, v⌄ = 0. This follows from the fact that

ΔV is the functional gradient of EV [u] = ∥Ku∥2 (Definition 2.6),

and hence
8 ⎷ΔVu, v⌄ = 2⎷Ku,Kv⌄ = 0 (since Kv = 0).

Next, we have ⎷− grad𝑝, v⌄ = ⎷𝑝, div v⌄ = 0, since every Killing

field is divergence-free.

It remains to show that ⎷∇uu, v⌄ = 0. Using integration by parts

and the divergence-freeness of u, we have ⎷∇uu, v⌄ = −⎷u,∇uv⌄,
which vanishes by the skew-symmetry of ∇v in (74). □

A.3 Killing Operator in terms of Complex Analysis on
Complex Manifolds

For an oriented compact Riemannian 2-manifold 𝑀 , the tangent

bundle 𝑇𝑀 , equipped with the counterclockwise 90
◦
rotation opera-

tor 𝐽 , becomes a complex line bundle over𝑀 . This complex structure

8
If 𝜕𝑀 ≠ ∅, the natural boundary condition (i.e., the free-slip condition from Proposi-

tion 3.1) must be imposed on u.
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endows𝑀 with the structure of a Riemann surface. Compact Rie-

mann surfaces are, in fact, complex algebraic curves, and as such, they
naturally admit several important operators from complex analysis,

which we now introduce.

A.3.1 Complex-Linear and Anti-Linear Forms. The complex struc-

ture 𝐽 on𝑇𝑀 induces a corresponding complex structure on 1-forms,

represented by the Hodge star operator ★1 acting on 1-forms. This

operator is related to 𝐽 by the adjoint relation:

⟨𝛼 |𝐽a⟩ = ⟨−★1 𝛼 |a⟩, 𝛼 ∈ Ω1 (𝑀), a ∈ Γ(𝑇𝑀) . (75)

Equivalently, this means −★1 𝛼 = 𝛼 ◦ 𝐽 .
For brevity, we will omit the subscript 𝑘 in the Hodge star ★𝑘

acting on 𝑘-forms, unless needed for clarity.

With both 𝑇𝑀 and 𝑇 ∗𝑀 now endowed with complex structures,

we can classify vector-valued 1-forms according to whether they

preserve or reverse the complex structure.

Definition A.1. A vector-valued 1-form 𝐴 ∈ Ω1 (𝑀,𝑇𝑀) is said to
be:

• complex-linear if −★𝐴 = 𝐴 ◦ 𝐽 = 𝐽 ◦𝐴.
• complex-antilinear if −★𝐴 = 𝐴 ◦ 𝐽 = −𝐽 ◦𝐴.

The corresponding spaces of complex-(anti)linear vector-valued 1-forms
are:

Γ(𝐾 ⊗ 𝑇𝑀) := {𝐴 ∈ Ω1 (𝑀,𝑇𝑀) | −★𝐴 = 𝐽𝐴} (76)

Γ(𝐾 ⊗ 𝑇𝑀) := {𝐴 ∈ Ω1 (𝑀,𝑇𝑀) | ★𝐴 = 𝐽𝐴} (77)

Here, 𝐾 denotes the canonical bundle of the algebraic curve𝑀 .

Every vector-valued 1-form admits a decomposition into complex-

linear and a complex-antilinear components:

Ω1 (𝑀,𝑇𝑀) = Γ(𝐾 ⊗ 𝑇𝑀) ⊕ Γ(𝐾 ⊗ 𝑇𝑀), (78a)

𝐴 = 1

2
(𝐴 + 𝐽 ★𝐴)︸          ︷︷          ︸
∈Γ (𝐾⊗𝑇𝑀 )

+ 1

2
(𝐴 − 𝐽 ★𝐴)︸          ︷︷          ︸
∈Γ (𝐾⊗𝑇𝑀 )

. (78b)

These two componets are orthogonal under the Frobenius product:

⟨𝐴 ∧★𝐵⟩ = 0 ∀𝐴 ∈ Γ(𝐾 ⊗ 𝑇𝑀), 𝐵 ∈ Γ(𝐾 ⊗ 𝑇𝑀). (79)

The complex-linear and complex-antilinear tensors can also be

understood in terms of symmetric and skew-symmetric bilinear

forms. Applying the ♭ operator to a vector-valued 1-form yields a

covector-valued 1-form, (i.e., a bilinear form), defined by

𝐴♭⟦a, b⟧ := ⟨𝐴a, b⟩. (80)

One can vertify that

𝐴 ∈ Γ(𝐾 ⊗ 𝑇𝑀) if and only if 𝐴♭ is symmetric and tr(𝐴) = 0. (81)

In fact, the complex-linear part 𝐴′ := 1

2
(𝐴 + 𝐽 ★𝐴) and the complex-

antilinear part 𝐴′′ := 1

2
(𝐴 − 𝐽 ★𝐴) correspond respectively to the

trace/skew-symmetric part and the trace-free symmetric part of 𝐴♭
:

(𝐴′)♭⟦a, b⟧ = 1

2
tr(𝐴)⟨a, b⟩ + 1

2
(⟨𝐴a, b⟩ − ⟨𝐴b, a⟩), (82a)

(𝐴′′)♭⟦a, b⟧ = 1

2
(⟨𝐴a, b⟩ + ⟨𝐴b, a⟩) − 1

2
tr(𝐴)⟨a, b⟩. (82b)

These expressions can be verified by evaluating on vectors from a

(pointwise) orthonormal basis.

A.3.2 Decomposition of Vector Gradients. Vector-valued 1-forms

are fundamental objects in the analysis of flow fields, as they natu-

rally arise when differentiating a vector field such as the velocity.

Specifically, the Levi-Civita covariant derivative of a vector field

u ∈ Γ(𝑇𝑀) is a vector-valued 1-form ∇u ∈ Ω1 (𝑀,𝑇𝑀).
Applying the decomposition from (78) to∇u, we obtain its complex-

linear and complex-antilinear components, denoted by 𝜕u and 𝜕u
respectively.

DefinitionA.2. TheWirtinger differential operators 𝜕 : Γ(𝑇𝑀) →
Γ(𝐾 ⊗ 𝑇𝑀) and 𝜕 : Γ(𝑇𝑀) → Γ(𝐾 ⊗ 𝑇𝑀) (the latter also known as
the Dolbeault operator) are defined as

𝜕u := 1

2
(∇u + 𝐽 ★∇u) (83)

𝜕u := 1

2
(∇u − 𝐽 ★∇u), (84)

which are the complex-linear and complex-antilinear parts of ∇u:

∇u = 𝜕u + 𝜕u. (85)

By (82), Proposition 2.1, the fact that tr(∇u) = div(u), and the

fact that 𝑑 (u♭) corresponds to twice the skew-symmetric part
9
of

∇u, we obtain:

(𝜕u)♭ = 1

2
(div u)𝑔 + 1

2
𝑑 (u♭) (86)

(𝜕u)♭ = Ku − 1

2
(div u)𝑔. (87)

If u is a divergence-free velocity field, i.e., u ∈ 𝔛
div

, then the 𝜕

and 𝜕 derivatives of u reduce to:

(𝜕u)♭ = 1

2
𝜔 and (𝜕u)♭ = Ku (88)

where 𝜔 = 𝑑 (u♭) is the vorticity 2-form, and Ku is the strain rate

tensor of the flow.

The identities in (88) allow us to use the tools of 𝜕- and 𝜕-calculus

from complex differential geometry to perform calculations involv-

ing vorticity and the strain rate.

A.4 Proof of Proposition 2.2
We show that the functional gradient of the Rayleigh dissipation

functional R : 𝔛
div
→ R, defined by R[u] =

∬
𝑀
𝜈 |Ku|2 𝑑𝐴, is given

by (gradR)|u = −2𝜈 div(Ku)♯ . Using the identity from (88), this is

equivalent to showing (gradR)|u = −2𝜈 ★−1

0
𝑑∇ ★1 (𝜕u), where 𝑑∇

denotes the covariant exterior derivative acting on vector-valued

forms.

By (88), the functional R[𝑢] can be written in terms of the Dol-

beault operator as

R[u] = 𝜈
∬
𝑀
⟨𝜕u ∧★𝜕u⟩. (89)

Let ů ∈ 𝔛
div

be a divergence-free variation vanishing on 𝜕𝑀 . The

variation of R in the direction ů is

𝑑
𝑑𝜖

���
𝜖=0

R[u + 𝜖ů] = 2𝜈
∬
𝑀
⟨𝜕ů ∧★𝜕u⟩ (90)

= 2𝜈
∬
𝑀
⟨∇ů ∧★𝜕u⟩, (91)

9
To verify that 𝑑 (u)♭⟦a, b⟧ = ⟨∇au, b⟩ − ⟨∇bu, a⟩, expand the expression

𝑑 (u)♭⟦a, b⟧ = 𝑑a ⟨u, b⟩ − 𝑑b ⟨u, a⟩ − ⟨u, [a, b] ⟩, and apply the metric compatibility

property 𝑑a ⟨u, b⟩ = ⟨∇au, b⟩ + ⟨u, ∇ab⟩(similarly for the second term) along with the

torsion-free property [𝑎,𝑏 ] = ∇ab − ∇ba.
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where the second equality uses the decomposition (85) and the

orthogonality of complex-linear and antilinear parts from (79). We

now integrate by parts:

𝑑
𝑑𝜖

���
𝜖=0

R[u + 𝜖ů] = −2𝜈
∬
𝑀
⟨ů, 𝑑∇ ★ 𝜕u⟩ (92)

= −2𝜈
∬
𝑀
⟨ů,★−1

0
𝑑∇ ★1 𝜕u⟩ 𝑑𝐴 (93)

= ⎷ů,−2𝜈 ★−1

0
𝑑∇ ★1 𝜕u⌄. (94)

Therefore, we conclude that (gradR)|u = −2𝜈 ★−1

0
𝑑∇ ★1 𝜕u. □

A.5 Proof of Proposition 3.1
We derive the natural boundary condition associated with the func-

tional (8), which can also be expressed in the form (89). To do so,

we repeat the derivation in Appendix A.4, but this time without

assuming that the variation ů vanishes on the boundary 𝜕𝑀 , thereby

retaining and examining the boundary terms.

Specifically, the integration by parts in (91) now yields:

𝑑
𝑑𝜖

���
𝜖=0

R[u + 𝜖ů] = 2𝜈
∮
𝜕𝑀
⟨ů,★𝜕u⟩ − 2𝜈

∬
𝑀
⟨ů, 𝑑∇ ★ 𝜕u⟩. (95)

Therefore, in order for the identity (gradR)|u = −2𝜈 div(Ku)♯ to
hold for all divergence-free variations ů ∈ 𝔛

div
that may be nonzero

on 𝜕𝑀 , the boundary term must vanish:〈
t, (★𝜕u)⟦t⟧

〉
= 0 on 𝜕𝑀 , (96)

where t denotes the unit tangent vector along the boundary curve

𝜕𝑀 . Using the identity (75) and setting n = 𝐽 t as the inward-pointing
unit normal, condition (96) becomes:

−
〈
t, (𝜕u)⟦n⟧

〉
= 0 on 𝜕𝑀. (97)

By the identity (88), this is equivalent to (Ku)⟦t, n⟧ = 0. □

A.6 Proof of Theorem 2.1
Using (88), we can rewrite the Dirichlet energies from Section 2.2.1

for divergence-free vector fields u ∈ 𝔛
div

as:

ED [u] = 1

2

∬
𝑀
⟨∇u ∧★∇u⟩, (98)

EH [u] =
∬
𝑀
⟨𝜕u ∧★𝜕u⟩, (99)

EV [u] =
∬
𝑀
⟨𝜕u ∧★𝜕u⟩. (100)

Following a similar derivation as in Appendix A.4, we find that

the (negative) functional gradients of these Dirichlet energies—

namely, the Bochner Laplacian (Definition 2.7), the Hodge Laplacian

(Definition 2.8), and the viscous Laplacian (Definition 2.9)—can be

expressed as:

★0 ΔBu = 𝑑∇ ★1 ∇u, (101)

★0 ΔHu = 2𝑑∇ ★1 𝜕u = −2𝐽𝑑∇𝜕u, (102)

★0 ΔVu = 2𝑑∇ ★1 𝜕u = 2𝐽𝑑∇𝜕u. (103)

The second equalities in (102) and (103) follow from the complex-

linear and antilinear types of 𝜕u and 𝜕u (see Definition A.1 and

Definition A.2), and from the identity 𝑑∇ ◦ 𝐽 = 𝐽 ◦ 𝑑∇ , which holds

due to the metric compatibility of the Levi-Civita connection ∇.

Substituting (83) into (102) yields:

−2𝐽𝑑∇𝜕u = −𝐽𝑑∇ (∇u + 𝐽 ★∇u) (104)

= −𝐽𝑑∇∇u + 𝑑∇ ★∇u (105)

= −★0 𝐾u + 𝑑∇ ★1 ∇u, (106)

where we used 𝑑∇∇u = −𝐽Ω∇u, with Ω∇ ∈ Ω2 (𝑀) denoting the

curvature 2-form of the connection∇. For the Levi-Civita connection,
this curvature form is the Gaussian curvature density ★0𝐾 .

Similarly, substituting (84) into (103) gives:

2𝐽𝑑∇𝜕u = ★0𝐾u + 𝑑∇ ★1 ∇u. (107)

Thus, we obtain the relations:

ΔHu = ΔBu − 𝐾u, ΔVu = ΔBu + 𝐾u. (108)

□

B DERIVATION FOR THE JUMP CONDITIONS
This appendix provides the background necessary to establish The-

orem 2.3, which states that the vorticity function exhibits a jump

across curvature sheets.

Let Γ ∈ 𝑀 be an oriented curve. The positive (resp. negative) side
of Γ is defined as the left (resp. right) side when traversing Γ in its

oriented direction.

If a function 𝑢 has a discontinuity along Γ, we denote the jump by

[𝑢]Γ : Γ → R, defined as the value of 𝑢 on the positive side minus

its value on the negative side.

The normal vector n to Γ is defined by n = 𝐽 t, where t is the unit
tangent to Γ; this convention agrees with the inward unit normal

when Γ = 𝜕𝑀 .

Let 𝑢 be a function that is smooth on 𝑀 \ Γ but potentially

discontinuous along Γ, and let 𝜑 be an arbitrary smooth test function

on𝑀 . By applying Green’s identity, we obtain:∬
𝑀\Γ (Δ𝑢)𝜑 𝑑𝐴 =

∫
Γ

(
[𝑢]Γ 𝜕𝜑𝜕n − [

𝜕𝑢
𝜕n ]Γ𝜑

)
𝑑𝑠

+
∮
𝜕𝑀

(
𝑢
𝜕𝜑
𝜕n −

𝜕𝑢
𝜕n𝜑

)
𝑑𝑠 +

∬
𝑀
𝑢Δ𝜑 𝑑𝐴.

(109)

Eq. (109) implies that the (weak) Laplacian of 𝑢 over the entire

domain𝑀 , defined via∬
𝑀
(Δ𝑢)𝜑 𝑑𝐴 ≡

∮
𝜕𝑀

(
𝑓
𝜕𝜑
𝜕n −

𝜕𝑢
𝜕n𝜑

)
𝑑𝑠 +

∬
𝑀
𝑢Δ𝜑 𝑑𝐴, (110)

can be evaluated as∬
𝑀
(Δ𝑢)𝜑𝑑𝐴 =

∬
𝑀\Γ (Δ𝑢)𝜑𝑑𝐴 +

∫
Γ

(
[ 𝜕𝑢𝜕n ]Γ𝜑 − [𝑢]Γ

𝜕𝜑
𝜕n

)
𝑑𝑠.

(111)

In other words, the Laplacian Δ𝑢 can be decomposed as Δ𝑢 =

(Δ𝑢)reg + (Δ𝑢)sing, where (Δ𝑢)reg is the classical Laplacian of 𝑢

away from the curve, and (Δ𝑢)sing is a distribution supported on Γ,

defined by the property

∬
(Δ𝑢)sing𝜑 =

∫
Γ ( [

𝜕𝑢
𝜕n ]Γ𝜑 − [𝑢]Γ

𝜕𝜑
𝜕n ).

We now express this distributional singularity using Dirac-𝛿

distributions:

Definition B.1. Let ℎ : Γ → R be a function defined on Γ. The
ℎ-weighted 𝛿 function on Γ is the distribution ℎ𝛿Γ defined by∬

𝑀
(ℎ𝛿Γ)𝜑 𝑑𝐴 :=

∫
Γ ℎ𝜑 𝑑𝑠, ∀𝜑 ∈ 𝐶

∞ (𝑀) . (112)
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The ℎ-weighted 𝛿 ′ function on Γ is the distribution ℎ𝛿 ′Γ defined by∬
𝑀
(ℎ𝛿 ′Γ)𝜑 𝑑𝐴 :=

∫
Γ −ℎ

𝜕𝜑
𝜕n 𝑑𝑠, ∀𝜑 ∈ 𝐶

∞ (𝑀) . (113)

Using the notation from Definition B.1 and eq. (109), we arrive

at the following general expression for the Laplacian of a function

with a jump across Γ:

Δ𝑢 = (Δ𝑢)reg + [ 𝜕𝑢𝜕n ]Γ𝛿Γ + [𝑢]Γ𝛿
′
Γ . (114)

B.1 Proof of Theorem 2.3
We show that the vorticity equation (28)

𝐷𝑤
𝐷𝑡

= 𝜈Δ𝑤 + 2𝜈 curl(𝐾u)
with singular Gaussian curvature 𝐾 = 𝐾reg + 𝑓 𝛿Γ gives rise to a

jump condition [𝑤]Γ = 2𝑓 ⟨u, t⟩ along the curve Γ.
Note that the term 2𝜈 curl(𝐾u) is a distribution. For any test

function 𝜑 ∈ 𝐶∞ (𝑀), we have∬
𝑀

2𝜈 curl(𝐾u)𝜑 𝑑𝐴 =
∬
𝑀
−2𝜈 div(𝐾𝐽u)𝜑 𝑑𝐴 (115)

= 2𝜈
∬
𝑀
𝐾 (𝐽u) · grad𝜑 𝑑𝐴 (116)

= 2𝜈
∬
𝑀
(𝐾reg + 𝑓 𝛿Γ) (𝐽u) · grad𝜑 𝑑𝐴 (117)

= 2𝜈
∬
𝑀\Γ 𝐾reg (𝐽u) · grad𝜑 𝑑𝐴 + 2𝜈

∮
Γ 𝑓 ⟨u,−𝐽 grad𝜑⟩ 𝑑𝑠 (118)

= 2𝜈
∬
𝑀

curl(𝐾regu)𝜑 𝑑𝐴 + 2𝜈
∮
Γ 𝑓 ⟨u,−𝐽 grad𝜑⟩ 𝑑𝑠. (119)

We simplify the boundary integral:∮
Γ 𝑓 ⟨u,−𝐽 grad𝜑⟩ 𝑑𝑠 =

∮
Γ 𝑓 ⟨u, t⟩

𝜕𝜑
𝜕n 𝑑𝑠 −

∮
Γ 𝑓 ⟨u, n⟩

𝜕𝜑
𝜕t 𝑑𝑠 (120)

=
∮
Γ 𝑓 ⟨u, t⟩

𝜕𝜑
𝜕n 𝑑𝑠 +

∮
Γ
𝜕
𝜕t (𝑓 ⟨u, n⟩)𝜑 𝑑𝑠. (121)

Thus, the singular part of 2𝜈 curl(𝐾u) is given by

(2𝜈 curl(𝐾u))sing = −2𝜈 𝑓 ⟨u, t⟩𝛿 ′Γ + 2𝜈 𝜕𝜕t (𝑓 ⟨u, n⟩)𝛿Γ . (122)

We now collect the regular and singular terms in the vorticity

equation
𝐷𝑤
𝐷𝑡

= 𝜈Δ𝑤 + 2𝜈 curl(𝐾u), using the decompositions from

(114) and (122):

𝐷𝑤
𝐷𝑡

= 𝜈
(
(Δ𝑤)reg + 2 curl(𝐾reg𝑢)

)
(123)

+ 𝜈
(
[ 𝜕𝑤𝜕n ]Γ + 2

𝜕
𝜕t (𝑓 ⟨u, n⟩)

)
𝛿Γ (124)

+ 𝜈 ( [𝑤]Γ − 2𝑓 ⟨u, t⟩) 𝛿 ′Γ . (125)

For this convection-diffusion equation to admit a bounded solution

𝑤 , the most singular term 𝛿 ′Γ (the weight of 𝛿 ′Γ) must vanish.
10

Hence, we conclude [𝑤]Γ = 2𝑓 ⟨u, t⟩ along Γ. □

C DERIVATION FOR BOUNDARY CONDITIONS

C.1 Proof of Theorem 3.1
We show that under the natural (free-slip) boundary condition

(Ku)⟦t, n⟧ = 0 on 𝜕𝑀 , the boundary vorticity satisfies𝑤𝜕 = 2𝜅g𝑢𝜕 ,

where 𝑢𝜕 = ⟨u, t⟩ is the tangential component of the velocity along

𝜕𝑀 , and 𝜅g is the geodesic curvature of 𝜕𝑀 .

Expanding the boundary condition (Ku)⟦t, n⟧ = 0 using the

identity (6) gives

⟨∇tu, n⟩ + ⟨∇nu, t⟩ = 0 on 𝜕𝑀. (126)

10
This can be justified rigorously by the method of dominant balance. As 𝜖-mollified

𝛿-functions tend to singular distributions, the solution behavior for 𝑡 > 𝑂 (𝜖𝛼 ) (for
some power 𝛼 ) becomes asymptotically governed by the equation without the most

singular part, requiring the weight of 𝛿 ′Γ to vanish.

We simplify the first term:

⟨∇tu, n⟩ = 𝑑t���⟨u, n⟩ − ⟨u,∇tn⟩ = ⟨u, t⟩𝜅g = 𝑢𝜕𝜅g . (127)

Therefore, the boundary condition becomes:

⟨∇nu, t⟩ + 𝜅g𝑢𝜕 = 0. (128)

We now express this condition in terms of the vorticity 𝜔 = 𝑑u♭ =
★𝑤 . To compute𝑤 = ★−1

0
𝜔 on the boundary, we evaluate 𝜔⟦t, n⟧.

This evaluation involves the Lie brackets of t and n, so we extend

both vector fields arbitrarily to a neighborhood of 𝜕𝑀 . Then, at the

boundary:

𝑤 = 𝜔⟦t, n⟧ = (𝑑u♭)⟦t, n⟧ (129)

= 𝑑t���⟨u, n⟩ − 𝑑n⟨u, t⟩ − ⟨u, [t, n]⟩ (130)

= −⟨∇nu, t⟩ −����⟨u,∇nt⟩ − ⟨u,∇tn −��∇nt⟩ (131)

= 2𝜅g𝑢𝜕 (132)

where we have substituted (128) and applied ⟨u,∇tn⟩ = −𝑢𝜕𝜅g. □

C.2 Proof of Theorem 3.2
We show that the friction boundary condition 2𝜈 (Ku)⟦t, n⟧ = 𝛼𝑢𝜕
implies the boundary vorticity formula𝑤𝜕 = (2𝜅g− 𝛼

2𝜈 )𝑢𝜕 following
the same derivation as in Appendix C.1.

Expanding the condition 2𝜈 (Ku)⟦t, n⟧ = 𝛼𝑢𝜕 yields ⟨∇tu, n⟩ +
⟨∇nu, t⟩ − 𝛼

2𝜈𝑢𝜕 = 0. By (127), this implies

⟨∇nu, t⟩ + (𝜅g − 𝛼
2𝜈 )𝑢𝜕 = 0. (133)

Now, following the computation in (129), the boundary vorticity

becomes:

𝑤 = −⟨∇nu, t⟩ − ⟨u,∇tn⟩︸       ︷︷       ︸
𝑢𝜕𝜅g

(133)

= (2𝜅g − 𝛼
2𝜈 )𝑢𝜕 . (134)

□

C.3 Proof of Theorem 3.3
Here, we prove our revised form of the Quartapelle–Valz-Gris con-
dition, which states that under the no-slip condition 𝑢𝜕 = 0, the

vorticity𝑤 and the harmonic coefficients (𝑐1, . . . , 𝑐𝑚) must satisfy∬
𝑀
𝜙 𝑓𝑤 𝑑𝐴 +

∑𝑚
𝑖=1

𝑐𝑖
∮
𝜕𝑀

𝑓 ℎ𝑖𝜕 𝑑𝑠 = 0 ∀ 𝑓 : 𝜕𝑀 → R, (135)

where 𝜙 𝑓 denotes the harmonic extension of 𝑓 to the interior of𝑀 .

Restricting the velocity field u = −𝐽 grad𝜓 +∑𝑚𝑖=1
𝑐𝑖h𝑖 (see (31))

to the boundary and imposing the condition 𝑢𝜕 = 0, we obtain

𝜕𝜓
𝜕n +

∑𝑚
𝑖=1

𝑐𝑖ℎ𝑖𝜕 = 0 (136)

where n = 𝐽 t is the inward-pointing unit normal along 𝜕𝑀 . Addi-

tionally, from (32), we have −Δ𝜓 = 𝑤 in𝑀 , with Dirichlet boundary

condition𝜓 |𝜕𝑀 = 0. Applying Green’s identity gives:∬
𝑀
𝜙 𝑓𝑤 𝑑𝐴 =

∬
𝑀
𝜙 𝑓 (−Δ𝜓 ) 𝑑𝐴 (137)

=
∬
𝑀
(−Δ𝜙 𝑓 )𝜓 +

∮
𝜕𝑀
(𝜙 𝑓

𝜕𝜓
𝜕n −

𝜕𝜙𝑓

𝜕n 𝜓 ) 𝑑𝑠. (138)

Using the facts that Δ𝜙 𝑓 = 0, 𝜙 𝑓 |𝜕𝑀 = 𝑓 , and 𝜓 |𝜕𝑀 = 0, along

with (136), this simplifies to

∬
𝑀
𝜙 𝑓𝑤 𝑑𝐴 =

∮
𝜕𝑀

𝑓 (−∑𝑚𝑖=1
𝑐𝑖ℎ𝑖𝜕) 𝑑𝑠,

which implies the identity in (135). □
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